提示: 手机请竖屏浏览!

病例8-2021——一名患胆管癌的34岁女性
Case 8-2021 — A 34-Year-Old Woman with Cholangiocarcinoma


Lipika Goyal ... 肿瘤 • 2021.03.18
相关阅读
• FDA批准首个无关癌症部位而以生物标志物定义适应证的药物

病例陈述


Christopher T. Chen医师:一名34岁女性为了治疗复发性转移性肝内胆管癌在本院肿瘤科门诊接受评估。

患者既往体健,但此次评估前3年出现急性腹痛和背痛,并于另外一家医院急诊科就诊。腹部超声检查发现右肝叶有一处病变。医师对患者进行了进一步影像学检查。

Theodore T. Pierce医师:磁共振成像(MRI)显示一处不均匀的低增强、分叶状6.1 cm×4.5 cm病变(图1A),影像学特征提示原发性或转移性癌症。病变伴周围胆管扩张,提示胆管梗阻(图1B);弥散受限,提示组织密度高(图1C);动脉期影像显示外侧边缘增强,反映病变边缘血管增多(图1D);病变中心区域延迟增强,提示纤维化(图1E和图1F)。总之,这些不符合良性病变(如血管瘤、局灶性结节增生和肝腺瘤)的典型特征,而与胆管癌最为吻合。

 

图1. 肝脏初次MRI检查

右肝叶可见分叶状低增强肿块(图A,箭形)。虽然这个并非某一病因的特异性发现,但肿块特征不符合该患者年龄组常见良性病变(如血管瘤、局灶性结节增生、肝腺瘤)的典型特征。冠状位T2加权像显示外周胆管扩张(图B,箭头),提示与肿块相关的中央胆管梗阻。胆管癌与其他恶性肿瘤(如肝细胞癌或转移癌)相比更易出现这种结果。在轴向弥散加权图像上,肿块有明显的弥散受限(图C,箭形)。肿瘤外周信号最亮,呈靶样外观,这是胆管癌的常见表现。弥散受限通常见于组织密度高的区域,如恶性肿瘤或脓肿。在给予造影剂(钆塞酸二钠)后获得的动脉相图像上,外周边缘增强区域(图D,箭头)反映了肿瘤周围血管丰富的区域,这是胆管癌的典型表现。一定要鉴别这种增强模式与间断的周围结节性动脉增强,后者是血管瘤(较常见的肝脏良性病变)的典型表现。肿瘤中心部分逐渐增强(图E,箭形)见于门静脉期。这一发现反映了肿瘤中心血管减少,这是胆管癌的典型特征,在肝细胞癌中少见。在延迟期图像上可见到肿瘤中心进一步增强(图F,箭形),同样反映了血管减少。由于存在广泛纤维化,因此造影剂未被廓清,而是保留在扩张的细胞外间隙内,这也是胆管癌的典型表现。纤维化通常导致肝包膜回缩,但该病例的肿瘤位于中心位置,因此未见此特征。

 

静脉给予18F-氟脱氧葡萄糖(FDG)示踪剂后进行正电子发射断层扫描和计算机断层扫描(PET-CT),结果显示肝右叶肿块FDG摄取增加。未发现其他高代谢部位。

Chen医师:由于担心是癌症,因此医师采集血液样本进行了肿瘤标志物检测。CA19-9水平升高至110 IU/mL(参考值,<35),但甲胎蛋白和癌胚抗原水平正常。医师在超声引导下对肝右叶肿块进行了针穿活检,并制订了治疗决策。





作者信息

Lipika Goyal, M.D., Christopher T. Chen, M.D., Theodore T. Pierce, M.D., and Vikram Deshpande, M.D.
From the Departments of Medicine (L.G., C.T.C.), Radiology (T.T.P.), and Pathology (V.D.), Massachusetts General Hospital, and the Departments of Medicine (L.G., C.T.C.), Radiology (T.T.P.), and Pathology (V.D.), Harvard Medical School — both in Boston.

 

参考文献

1. Chan ES, Yeh MM. The use of immunohistochemistry in liver tumors. Clin Liver Dis 2010;14:687-703.

2. Hainsworth JD, Rubin MS, Spigel DR, et al. Molecular gene expression profiling to predict the tissue of origin and direct site-specific therapy in patients with carcinoma of unknown primary site: a prospective trial of the Sarah Cannon Research Institute. J Clin Oncol 2013;31:217-223.

3. Brackett DG, Neyaz A, Arora K, et al. Cholangiolar pattern and albumin in situ hybridisation enable a diagnosis of intrahepatic cholangiocarcinoma. J Clin Pathol 2020;73:23-29.

4. Ferrone CR, Ting DT, Shahid M, et al. Erratum to: The ability to diagnose intrahepatic cholangiocarcinoma definitively using novel branched DNA-enhanced albumin RNA in situ hybridization technology. Ann Surg Oncol 2015;22:Suppl 3:S1609-S1609.

5. Bledsoe JR, Shinagare SA, Deshpande V. Difficult diagnostic problems in pancreatobiliary neoplasia. Arch Pathol Lab Med 2015;139:848-857.

6. Banales JM, Marin JJG, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020;17:557-588.

7. Saha SK, Zhu AX, Fuchs CS, Brooks GA. Forty-year trends in cholangiocarcinoma incidence in the U.S.: intrahepatic disease on the rise. Oncologist 2016;21:594-599.

8. American Cancer Society. Key statistics for bile duct cancer. July 2018 (https://www.cancer.org/cancer/bile-duct-cancer/about/key-statistics.html. opens in new tab).

9. Endo I, Gonen M, Yopp AC, et al. Intrahepatic cholangiocarcinoma: rising frequency, improved survival, and determinants of outcome after resection. Ann Surg 2008;248:84-96.

10. van Vugt JLA, Gaspersz MP, Coelen RJS, et al. The prognostic value of portal vein and hepatic artery involvement in patients with perihilar cholangiocarcinoma. HPB 2018;20:83-92

11. Primrose JN, Fox RP, Palmer DH, et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol 2019;20:663-673.

12. Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010;362:1273-1281.

13. Lamarca A, Palmer DH, Wasan HS, et al. ABC-06: a randomised phase III, multi-centre, open-label study of active symptom control (ASC) alone or ASC with oxaliplatin/5-FU chemotherapy (ASC+mFOLFOX) for patients (pts) with locally advanced/metastatic biliary tract cancers (ABC) previously treated with cisplatin/gemcitabine (CisGem) chemotherapy. J Clin Oncol 2019;37:Suppl:4003-4003. abstract.

14. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996;271:1734-1736.

15. Goeppert B, Roessler S, Renner M, et al. Mismatch repair deficiency is a rare but putative therapeutically relevant finding in non-liver fluke associated cholangiocarcinoma. Br J Cancer 2019;120:109-114.

16. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:2509-2520.

17. Food and Drug Administration. FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication. 2017 (https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-first-tissuesite-agnostic-indication. opens in new tab).

18. Javle M, Bekaii-Saab T, Jain A, et al. Biliary cancer: utility of next-generation sequencing for clinical management. Cancer 2016;122:3838-3847.

19. Lamarca A, Barriuso J, McNamara MG, Valle JW. Molecular targeted therapies: ready for “prime time” in biliary tract cancer. J Hepatol 2020;73:170-185.

20. Abou-Alfa GK, Sahai V, Hollebecque A, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol 2020;21:671-684.

21. Food and Drug Administration. FDA grants accelerated approval to pemigatinib for cholangiocarcinoma with an FGFR2 rearrangement or fusion. 2020 (https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pemigatinib-cholangiocarcinoma-fgfr2-rearrangement-or-fusion. opens in new tab).

22. Arai Y, Totoki Y, Hosoda F, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology 2014;59:1427-1434.

23. Graham RP, Barr Fritcher EG, Pestova E, et al. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Hum Pathol 2014;45:1630-1638.

24. Abou-Alfa G. ClarIDHy: a global, phase 3, randomized, double-blind study of ivosidenib (IVO) vs placebo in patients with advanced cholangiocarcinoma (CC) with an isocitrate dehydrogenase 1 (IDH1) mutation. Ann Oncol 2019;30:Suppl 5:1867-1867. abstract.

25. Subbiah V, Lassen U, Élez E, et al. Dabrafenib plus trametinib in patients with BRAFV600E-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial. Lancet Oncol 2020;21:1234-1243.

26. Subbiah V, Puzanov I, Blay J-Y, et al. Pan-cancer efficacy of vemurafenib in BRAFV600-mutant non-melanoma cancers. Cancer Discov 2020;10:657-663.

27. Javle M, Churi C, Kang HC, et al. HER2/neu-directed therapy for biliary tract cancer. J Hematol Oncol 2015;8:58-58.

28. Food and Drug Administration. FDA approves larotrectinib for solid tumors with NTRK gene fusions. 2018 (https://www.fda.gov/drugs/fda-approves-larotrectinib-solid-tumors-ntrk-gene-fusions. opens in new tab).

29. Food and Drug Administration. FDA approves entrectinib for NTRK solid tumors and ROS-1 NSCLC. 2019 (https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-entrectinib-ntrk-solid-tumors-and-ros-1-nsclc. opens in new tab).

30. Wu Y-M, Su F, Kalyana-Sundaram S, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov 2013;3:636-647.

31. Javle M, Lowery M, Shroff RT, et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J Clin Oncol 2018;36:276-282.

32. Silverman IM, Hollebecque A, Friboulet L, et al. Clinicogenomic analysis of FGFR2-rearranged cholangiocarcinoma identifies correlates of response and mechanisms of resistance to pemigatinib. Cancer Discov 2020;11:326-339.

33. Bahleda R, Meric-Bernstam F, Goyal L, et al. Phase I, first-in-human study of futibatinib, a highly selective, irreversible FGFR1-4 inhibitor in patients with advanced solid tumors. Ann Oncol 2020;31:1405-1412.

34. Katoh M. Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat Rev Clin Oncol 2019;16:105-122.

35. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228-247.

36. Goyal L, Saha SK, Liu LY, et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov 2017;7:252-263.

37. Goyal L, Shi L, Liu LY, et al. TAS-120 overcomes resistance to ATP-competitive FGFR inhibitors in patients with FGFR2 fusion-positive intrahepatic cholangiocarcinoma. Cancer Discov 2019;9:1064-1079.

38. Krook MA, Lenyo A, Wilberding M, et al. Efficacy of FGFR inhibitors and combination therapies for acquired resistance in FGFR2-fusion cholangiocarcinoma. Mol Cancer Ther 2020;19:847-857.

39. Krook MA, Bonneville R, Chen H-Z, et al. Tumor heterogeneity and acquired drug resistance in FGFR2-fusion-positive cholangiocarcinoma through rapid research autopsy. Cold Spring Harb Mol Case Stud 2019;5:a004002-a004002.

服务条款 | 隐私政策 | 联系我们