提示: 手机请竖屏浏览!

含糖饮料与肥胖的遗传风险
Sugar-Sweetened Beverages and Genetic Risk of Obesity


Qibin Qi ... 其他 • 2012.10.11
相关阅读
• 青少年饮用运动饮料的情况 • 高脂膳食与7年死亡率较低相关

摘要


背景

含糖饮料的消耗量随时间的增加已经与肥胖患病率的增高相平行,然而含糖饮料的摄入是否与肥胖的遗传易感性有交互作用尚未明确。

 

方法

我们利用护士健康研究(Nurses’Health Study,NHS)中的6,934例女性以及医疗专业人员随访研究(Health Professionals Follow-up Study,HPES)中的4,423例男性的数据,分析了遗传易感性和含糖饮料摄入之间的交互作用与体质指数(BMI,以体重的千克数除以身高米数的平方)和肥胖风险的关系。随后我们使用妇女基因组健康研究(Women’s Genome Health Study,WGHS)中21,740例女性数据进行了重复分析。我们通过32个和体质指数相关的基因位点来计算遗传易感性分数,并前瞻性地检验了相对于BMI的含糖饮料摄入量。

 

结果

在NHS和HPFS队列中,含糖饮料摄入量较高的参与者与BMI的遗传相关性比摄入量较低参与者的强。在合并的队列中,根据含糖饮料的摄入量,每增加10个风险等位基因,相对应的体质指数增加如下:每个月少于1份的增量为1.00,每个月1~4份为1.12,每个月2~6份为1.38,每天≥1份为1.78(交互作用P<0.001)。每增加10个风险等位基因相关的发生肥胖相对危险度在前述的摄入量分类中分别为1.19(95%可信区间[CI]0.90~1.59)、1.67(95% CI 1.28~2.16)、1.58(95% CI 1.01~2.47)和5.06(95% CI 1.66~15.5)(交互作用P=0.02)。在WGHS队列中,根据前述摄入量分类,每增加10个风险等位基因相关的BMI增加分别为1.39、1.64、1.90和2.53(交互作用P=0.001);发生肥胖相对危险度分别为1.40(95% CI 1.19~1.64)、1.50(95% CI 1.16~1.93)、1.54(95% CI 1.21~1.94)和3.16(95% CI 2.03~4.92)(交互作用P=0.007)。

 

结论

含糖饮料的摄入量越高,与肥胖的遗传相关性似乎越显著(由美国国家卫生研究院[National Institutes of Health]等资助)。





作者信息

Qibin Qi, Ph.D., Audrey Y. Chu, Ph.D., Jae H. Kang, Sc.D., Majken K. Jensen, Ph.D., Gary C. Curhan, Sc.D., Louis R. Pasquale, M.D., Paul M. Ridker, M.D., M.P.H., David J. Hunter, M.B., B.S., Sc.D., Walter C. Willett, M.D., Dr.P.H., Eric B. Rimm, Sc.D., Daniel I. Chasman, Ph.D., Frank B. Hu, M.D., Ph.D., and Lu Qi, M.D., Ph.D.
From the Departments of Nutrition (Q.Q., M.K.J., D.J.H., W.C.W., E.B.R., F.B.H., L.Q.) and Epidemiology (G.C.C., D.J.H., W.C.W., E.B.R., F.B.H.), Harvard School of Public Health; and the Divisions of Preventive Medicine (A.Y.C., P.M.R., D.I.C.), Cardiovascular Disease (P.M.R.), and Genetics (D.I.C.), and the Channing Division of Network Medicine (J.H.K., G.C.C., L.R.P., D.J.H., W.C.W., E.B.R., F.B.H., L.Q.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; and the Department of Ophthalmology (L.R.P.), Massachusetts Eye and Ear Infirmary, Harvard Medical School — all in Boston. Address reprint requests to Dr. Lu Qi at the Department of Nutrition, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, or at nhlqi@channing.harvard.edu.

 

参考文献

1. Finucane MM, Stevens GA, Cowan MJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 2011;377:557-567

2. Qi L, Cho YA. Gene-environment interaction and obesity. Nutr Rev 2008;66:684-694

3. McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med 2010;363:2339-2350

4. Willer CJ, Speliotes EK, Loos RJ, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 2009;41:25-34

5. Speliotes EK, Willer CJ, Berndt SI, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010;42:937-948

6. Malik VS, Popkin BM, Bray GA, Despres JP, Hu FB. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 2010;121:1356-1364

7. Schulze MB, Manson JE, Ludwig DS, et al. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA 2004;292:927-934

8. Malik VS, Schulze MB, Hu FB. Intake of sugar-sweetened beverages and weight gain: a systematic review. Am J Clin Nutr 2006;84:274-288

9. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. Am J Public Health 2007;97:667-675

10. Malik VS, Hu FB. Sugar-sweetened beverages and health: where does the evidence stand? Am J Clin Nutr 2011;94:1161-1162

11. Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med 2011;364:2392-2404

12. Popkin BM. Patterns of beverage use across the lifecycle. Physiol Behav 2010;100:4-9

13. Colditz GA, Manson JE, Hankinson SE. The Nurses' Health Study: 20-year contribution to the understanding of health among women. J Womens Health 1997;6:49-62

14. Rimm EB, Giovannucci EL, Willett WC, et al. Prospective study of alcohol consumption and risk of coronary disease in men. Lancet 1991;338:464-468

15. Hunter DJ, Kraft P, Jacobs KB, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 2007;39:870-874

16. Qi L, Cornelis MC, Kraft P, et al. Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes. Hum Mol Genet 2010;19:2706-2715

17. Cornelis MC, Monda KL, Yu K, et al. Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. PLoS Genet 2011;7:e1002033-e1002033

18. Wiggs JL, Kang JH, Yaspan BL, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Hum Mol Genet 2011;20:4707-4713

19. Jensen MK, Pers TH, Dworzynski P, Girman CJ, Brunak S, Rimm EB. Protein interaction-based genome-wide analysis of incident coronary heart disease. Circ Cardiovasc Genet 2011;4:549-556

20. Ridker PM, Chasman DI, Zee RYL, et al. Rationale, design, and methodology of the Women's Genome Health Study: a genome-wide association study of more than 25,000 initially healthy American women. Clin Chem 2008;54:249-255

21. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 1992;35:1114-1126

22. Willett WC, Sampson L, Stampfer MJ, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985;122:51-65

23. Feskanich D, Rimm EB, Giovannucci EL, et al. Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. J Am Diet Assoc 1993;93:790-796

24. Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology 1990;1:466-473

25. Pirie P, Jacobs D, Jeffery R, Hannan P. Distortion in self-reported height and weight data. J Am Diet Assoc 1981;78:601-606

26. Wolf AM, Hunter DJ, Colditz GA, et al. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 1994;23:991-999

27. McCullough ML, Feskanich D, Stampfer MJ, et al. Diet quality and major chronic disease risk in men and women: moving toward improved dietary guidance. Am J Clin Nutr 2002;76:1261-1271

28. Ahmad T, Lee IM, Pare G, et al. Lifestyle interaction with fat mass and obesity-associated (FTO) genotype and risk of obesity in apparently healthy U.S. women. Diabetes Care 2011;34:675-680

29. Weinstein AR, Sesso HD, Lee IM, et al. Relationship of physical activity vs body mass index with type 2 diabetes in women. JAMA 2004;292:1188-1194

30. Andreasen CH, Stender-Petersen KL, Mogensen MS, et al. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes 2008;57:95-101

31. Rampersaud E, Mitchell BD, Pollin TI, et al. Physical activity and the association of common FTO gene variants with body mass index and obesity. Arch Intern Med 2008;168:1791-1797[Erratum, Arch Intern Med 2009;169:453.]

32. Tan JT, Dorajoo R, Seielstad M, et al. FTO variants are associated with obesity in the Chinese and Malay populations in Singapore. Diabetes 2008;57:2851-2857

33. Hakanen M, Raitakari OT, Lehtimaki T, et al. FTO genotype is associated with body mass index after the age of seven years but not with energy intake or leisure-time physical activity. J Clin Endocrinol Metab 2009;94:1281-1287

34. Jonsson A, Renstrom F, Lyssenko V, et al. Assessing the effect of interaction between an FTO variant (rs9939609) and physical activity on obesity in 15,925 Swedish and 2,511 Finnish adults. Diabetologia 2009;52:1334-1338[Erratum, Diabetologia 2010;53:1244.]

35. Kilpelainen TO, Qi L, Brage S, et al. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med 2011;8:e1001116-e1001116

36. Li S, Zhao JH, Luan J, et al. Physical activity attenuates the genetic predisposition to obesity in 20,000 men and women from EPIC-Norfolk Prospective Population Study. PLoS Med 2010;7:e1000332-e1000332

37. Manolio TA, Bailey-Wilson JE, Collins FS. Genes, environment and the value of prospective cohort studies. Nat Rev Genet 2006;7:812-820

38. Ebbeling CB, Feldman HA, Chomitz VR, et al. A randomized trial of sugar-sweetened beverages and adolescent body weight. N Engl J Med 2012;367:1407-1416

39. de Ruyter JC, Olthof MR, Seidell JC, Katan MB. A trial of sugar-free or sugar-sweetened beverages and body weight in children. N Engl J Med 2012;367:1397-1406

40. Mattes RD. Dietary compensation by humans for supplemental energy provided as ethanol or carbohydrate in fluids. Physiol Behav 1996;59:179-187

41. DiMeglio DP, Mattes RD. Liquid versus solid carbohydrate: effects on food intake and body weight. Int J Obes Relat Metab Disord 2000;24:794-800

42. Schulze MB, Liu S, Rimm EB, Manson JE, Willett WC, Hu FB. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr 2004;80:348-356

43. Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 2009;119:1322-1334

服务条款 | 隐私政策 | 联系我们