提示: 手机请竖屏浏览!

小儿持续性哮喘患者的肺功能发育及衰退模式
Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma


Michael J. McGeachie ... 呼吸系统疾病 • 2016.05.12
相关阅读
• 增加吸入性糖皮质激素以预防哮喘发作 • 每日或间歇性布地奈德治疗学龄前儿童复发性哮鸣 • 环境微生物暴露与儿童哮喘

摘要


背景

纵向追踪小儿持续性哮喘患者的肺功能发育及衰退的评测结果,或可揭示哮喘与后期慢性气流阻塞间的联系。

 

方法

研究者以患者童年期到成年期的肺量测定结果为依据,即第一秒用力呼气量(FEV1)曲线图,将肺功能的发育及衰退划分为四种特征性模式,并以此对小儿哮喘患者分类,并检查异常模式的相关风险因素。以美国国家健康与营养调查研究(National Health and Nutrition Examination Survey)中非哮喘研究参与者的FEV1值作为正常值。

 

结果

在684例研究参与者中,170例(25%)研究参与者肺功能发育正常且无早期衰退,514例(75%)研究参与者肺功能发育异常。肺功能发育异常的研究参与者中,176例(26%)研究参与者肺功能发育不足且早期衰退,160例(23%)仅发育不足,178例(26%)发育正常但早期衰退。肺功能发育不足与下列情况相关:FEV1基线值较低、支气管扩张剂反应较小、基线时气道高反应性以及性别男(针对各因素进行对比,均P<0.001)。最后一次肺量测定中(均值[±SD]年龄,26.0岁±1.8岁),73例研究参与者(11%)达到《慢性阻塞性肺病全球倡议》(Global Initiative for Chronic Obstructive Lung Disease)所述的肺功能障碍标准,呈慢性阻塞性肺疾病(COPD)表现,这些研究参与者更易发生肺功能发育不足,而非正常发育(8%对3%,P<0.001)。

 

结论

对于肺功能发育和衰退的纵向模式异常,最重要的预测指标包括儿童期肺功能受损和性别男。持续性哮喘且肺功能发育不足的患儿,其成年早期发生固定气流阻塞的风险增大,并可能患COPD(由Parker B. Francis基金会等资助;ClinicalTrials.gov注册号为NCT00000575)。





作者信息

Michael J. McGeachie, Ph.D., Katherine P. Yates, Sc.M., Xiaobo Zhou, Ph.D., Feng Guo, Ph.D., Alice L. Sternberg, Sc.M., Mark L. Van Natta, M.H.S., Robert A. Wise, M.D., Stanley J. Szefler, M.D., Sunita Sharma, M.D., Alvin T. Kho, Ph.D., Michael H. Cho, M.D., Damien C. Croteau-Chonka, Ph.D., Peter J. Castaldi, M.D., Gaurav Jain, M.S., Amartya Sanyal, Ph.D., Ye Zhan, Bryan R. Lajoie, Ph.D., Job Dekker, Ph.D., John Stamatoyannopoulos, M.D., Ronina A. Covar, M.D., Robert S. Zeiger, M.D., Ph.D., N. Franklin Adkinson, M.D., Paul V. Williams, M.D., H. William Kelly, Pharm.D., Hartmut Grasemann, M.D., Judith M. Vonk, Ph.D., Gerard H. Koppelman, M.D., Dirkje S. Postma, M.D., Benjamin A. Raby, M.D., Isaac Houston, Ph.D., Quan Lu, Ph.D., Anne L. Fuhlbrigge, M.D., Kelan G. Tantisira, M.D., Edwin K. Silverman, M.D., Ph.D., James Tonascia, Ph.D., Scott T. Weiss, M.D., and Robert C. Strunk, M.D., for the CAMP Research Group*
From the Channing Division of Network Medicine and the Department of Medicine (M.J.M., X.Z., F.G., A.T.K., M.H.C., D.C.C.-C., P.J.C., B.A.R., I.H., A.L.F., K.G.T., E.K.S., S.T.W.) and the Division of Pulmonary and Critical Care Medicine (A.L.F.), Brigham and Women’s Hospital, Boston Children’s Hospital (A.T.K.), and the Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health and Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health (Q.L.), Boston; Johns Hopkins Bloomberg School of Public Health (K.P.Y., A.L.S., M.L.V.N., J.T.) and Johns Hopkins University School of Medicine (R.A.W., N.F.A.), Baltimore; National Jewish Health, Children’s Hospital Colorado, and University of Colorado Denver School of Medicine (S.J.S., R.A.C.), Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado (S.S.), and University of Colorado (R.A.C.), Denver; Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology (G.J., A.S., Y.Z., B.R.L., J.D.), and Howard Hughes Medical Institute (J.D.), University of Massachusetts Medical School, Worcester; School of Biological Sciences, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (A.S.); Genome Sciences, School of Medicine, University of Washington (J.S.), and ASTHMA Inc. Clinical Research Center and Northwest Asthma and Allergy Center (P.V.W.), Seattle; University of California at San Diego, Pediatrics, La Jolla, and Kaiser Permanente Southern California Region, San Diego (R.S.Z.); University of New Mexico Health Sciences Center, Albuquerque (H.W.K.); the Division of Respiratory Medicine, Department of Pediatrics, the Hospital for Sick Children and University of Toronto, Toronto (H.G.); Groningen Research Institute for Asthma and COPD (J.M.V., G.H.K., D.S.P.), the Departments of Epidemiology (J.M.V.) and Pulmonology (D.S.P.), University of Groningen, University Medical Center Groningen, and the Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children’s Hospital (G.H.K.), Groningen, the Netherlands; and the Division of Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine, St. Louis (R.C.S.).Address reprint requests to Dr. Weiss at Channing Laboratory, 181 Longwood Ave., Rm. 459, Boston, MA 02115, or at scott.weiss@channing.harvard.edu. *A complete list of members of the Childhood Asthma Management Program (CAMP) Research Group is provided in Supplementary Appendix 1, available at NEJM.org.

 

参考文献

1.Speizer FE, Tager IB. Epidemiology of chronic mucus hypersecretion and obstructive airways disease. Epidemiol Rev 1979;1:124-142

2.Weiss ST, Speizer FE. Epidemiology and natural history. In: Weiss EB, Stein M, eds. Bronchial asthma: mechanisms and therapeutics. 3rd ed. Boston: Little, Brown, 1993:15-15.

3.Fletcher C. The natural history of chronic bronchitis and emphysema: an eight-year study of early chronic obstructive lung disease in working men in London. New York: Oxford University Press, 1976.

4.Sears MR, Greene JM, Willan AR, et al. A longitudinal, population-based, cohort study of childhood asthma followed to adulthood. N Engl J Med 2003;349:1414-1422

5.Hospers JJ, Postma DS, Rijcken B, Weiss ST, Schouten JP. Histamine airway hyper-responsiveness and mortality from chronic obstructive pulmonary disease: a cohort study. Lancet 2000;356:1313-1317

6.Stocks J, Hislop A, Sonnappa S. Early lung development: lifelong effect on respiratory health and disease. Lancet Respir Med 2013;1:728-742

7.Grol MH, Gerritsen J, Vonk JM, et al. Risk factors for growth and decline of lung function in asthmatic individuals up to age 42 years: a 30-year follow-up study. Am J Respir Crit Care Med 1999;160:1830-1837

8.Lange P, Parner J, Vestbo J, Schnohr P, Jensen G. A 15-year follow-up study of ventilatory function in adults with asthma. N Engl J Med 1998;339:1194-1200

9.James AL, Palmer LJ, Kicic E, et al. Decline in lung function in the Busselton Health Study: the effects of asthma and cigarette smoking. Am J Respir Crit Care Med 2005;171:109-114

10.Tantisira KG, Fuhlbrigge AL, Tonascia J, et al. Bronchodilation and bronchoconstriction: predictors of future lung function in childhood asthma. J Allergy Clin Immunol 2006;117:1264-1271

11.Hallberg J, Anderson M, Wickman M, Svartengren M. Factors in infancy and childhood related to reduced lung function in asthmatic children: a birth cohort study (BAMSE). Pediatr Pulmonol 2010;45:341-348

12.Ulrik CS. Outcome of asthma: longitudinal changes in lung function. Eur Respir J 1999;13:904-918

13.Jamrozik E, Knuiman MW, James A, Divitini M, Musk AW. Risk factors for adult-onset asthma: a 14-year longitudinal study. Respirology 2009;14:814-821

14.Svanes C, Sunyer J, Plana E, et al. Early life origins of chronic obstructive pulmonary disease. Thorax 2010;65:14-20

15.Stern DA, Morgan WJ, Wright AL, Guerra S, Martinez FD. Poor airway function in early infancy and lung function by age 22 years: a non-selective longitudinal cohort study. Lancet 2007;370:758-764

16.Childhood Asthma Management Program Research Group. The Childhood Asthma Management Program (CAMP): design, rationale, and methods. Control Clin Trials 1999;20:91-120

17.The Childhood Asthma Management Program Research Group. Long-term effects of budesonide or nedocromil in children with asthma. N Engl J Med 2000;343:1054-1063

18.Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med 1999;159:179-187

19.Cleveland WS. LOWESS: a program for smoothing scatterplots by robust locally weighted regression. Am Stat 1981;35:54-54

20.Hosmer DW, Lemeshow S, May S. Applied survival analysis: regression modeling of time-to-event data. 2nd ed. Hoboken, NJ: Wiley-Interscience, 2008.

21.Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. 3rd ed. Hoboken, NJ: Wiley, 2013.

22.Vestbo J, Hurd SS, Agustí AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2013;187:347-365

23.Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-174

24.Fleiss JL, Levin BA, Paik MC. Statistical methods for rates and proportions. 3rd ed. Hoboken, NJ: Wiley-Interscience, 2003.

25.Swanney MP, Ruppel G, Enright PL, et al. Using the lower limit of normal for the FEV1/FVC ratio reduces the misclassification of airway obstruction. Thorax 2008;63:1046-1051

26.Mohamed Hoesein FA, Zanen P, Lammers JW. Lower limit of normal or FEV1/FVC < 0.70 in diagnosing COPD: an evidence-based review. Respir Med 2011;105:907-915

27.Wang X, Mensinga TT, Schouten JP, Rijcken B, Weiss ST. Determinants of maximally attained level of pulmonary function. Am J Respir Crit Care Med 2004;169:941-949

28.Guerra S, Sherrill DL, Kurzius-Spencer M, et al. The course of persistent airflow limitation in subjects with and without asthma. Respir Med 2008;102:1473-1482

29.Hollams EM, de Klerk NH, Holt PG, Sly PD. Persistent effects of maternal smoking during pregnancy on lung function and asthma in adolescents. Am J Respir Crit Care Med 2014;189:401-407

30.Huang S, Vasquez MM, Halonen M, Martinez FD, Guerra S. Asthma, airflow limitation and mortality risk in the general population. Eur Respir J 2015;45:338-346

31.Harmsen L, Ulrik CS, Porsbjerg C, Thomsen SF, Holst C, Backer V. Airway hyperresponsiveness and development of lung function in adolescence and adulthood. Respir Med 2014;108:752-757

32.Vonk JM, Jongepier H, Panhuysen CI, Schouten JP, Bleecker ER, Postma DS. Risk factors associated with the presence of irreversible airflow limitation and reduced transfer coefficient in patients with asthma after 26 years of follow up. Thorax 2003;58:322-327

33.Tai A, Tran H, Roberts M, Clarke N, Wilson J, Robertson CF. The association between childhood asthma and adult chronic obstructive pulmonary disease. Thorax 2014;69:805-810

34.Strunk RC, Weiss ST, Yates KP, Tonascia J, Zeiger RS, Szefler SJ. Mild to moderate asthma affects lung growth in children and adolescents. J Allergy Clin Immunol 2006;118:1040-1047

35.Gibson PG, Simpson JL. The overlap syndrome of asthma and COPD: what are its features and how important is it? Thorax 2009;64:728-735

36.Lange P, Celli B, Agustí A, et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med 2015;373:111-122

37.Tamimi A, Serdarevic D, Hanania NA. The effects of cigarette smoke on airway inflammation in asthma and COPD: therapeutic implications. Respir Med 2012;106:319-328

服务条款 | 隐私政策 | 联系我们