提示: 手机请竖屏浏览!

乳腺癌肿瘤大小、过度诊断和乳房X线照相术的有效性
Breast-Cancer Tumor Size, Overdiagnosis, and Mammography Screening Effectiveness


H. Gilbert Welch ... 肿瘤 • 2016.10.13
相关阅读
• 理解因癌症筛查导致的过度诊断 • 补充性乳腺磁共振成像检查和乳房X线筛查的风险及益处比较 • 临床乳腺检查在筛查性乳房X线摄影尚未普及时的价值

利弊几何争论不休,钼靶筛查何去何从


王殊

北京大学人民医院乳腺中心

 

钼靶筛查是目前应用最为广泛的筛查手段,涉及超过60万女性的十几项大型临床研究,得出乳腺钼靶筛查可以降低乳腺癌相关死亡率的结论1,为欧美实施国家性筛查项目提供了理论依据。然而近年来,钼靶筛查带来的过度诊断问题备受关注,其价值受到挑战。

查看更多

摘要


背景

筛查性乳房X线照相术的目的是在肿瘤病灶长到足够大而引起症状之前检出小的恶性肿瘤。因此有效的筛查应当带来的结果是检出较大数量的小肿瘤,随着时间推移将有较少的大肿瘤被发现。

 

方法

我们采用来自监测、流行病学和最终结果(Surveillance,Epidemiology,and End Results,SEER)项目1975—2012年的数据,计算了年龄≥40岁的女性中乳腺癌肿瘤大小的分布及病灶大小特异的乳腺癌的发病率。我们还计算了两个时期病灶大小特异的癌症病例的病死率:广泛筛查性乳房X线照相术实施之前的基线时期(1975—1979年)以及围绕最近几年可获得10年随访数据的时期(2000—2002年)。

 

结果

在筛查性乳房X线照相术出现后,被检出的小乳腺肿瘤(浸润性肿瘤测量值<2 cm或者为原位癌)的比例从36%上升至68%;发现的大肿瘤(浸润性肿瘤测量值≥2 cm)的比例从64%下降至32%。但是,这种趋势较少由大肿瘤发病率实质性下降引起(乳房X线照相术出现后的时期与筛查之前的时期相比,每10万名女性会被少观察到30例癌症病例),而更多是由检测到小肿瘤数量的实质性增高引起(每10万名女性会被多观察到162例癌症病例)。假定潜在的疾病负担是稳定的,每10万名女性中额外诊断的162例小肿瘤中只有30例预期会进展为大肿瘤,这就暗示每10万名女性中剩余的132例癌症病例被过度诊断了(也就是说,筛查中发现的癌症病例最终并不会导致临床症状)。筛查降低乳腺癌死亡率的潜力由大肿瘤发病率的下降反映出。但是,仅就这些大肿瘤而言,肿瘤大小特定的病死率下降提示治疗手段的改进是乳腺癌死亡率下降中至少2/3的原因。

 

结论

虽然在筛查性乳房X线照相术引入后大肿瘤的检出率下降,但是更优的肿瘤大小分布主要是额外检出小肿瘤的结果。女性被过度诊断为乳腺癌的可能性高于较早期被检测到真正会变大的肿瘤。筛查性乳房X线照相术应用后乳腺癌死亡率的降低主要是全身治疗改善的结果。





作者信息

H. Gilbert Welch, M.D., M.P.H., Philip C. Prorok, Ph.D., A. James O’Malley, Ph.D., and Barnett S. Kramer, M.D., M.P.H.
From the Dartmouth Institute for Health Policy and Clinical Practice, Lebanon (H.G.W., A.J.O.), and the Departments of Medicine (H.G.W.) and Biomedical Data Science (A.J.O.), Geisel School of Medicine, Hanover — both in New Hampshire; and the Division of Cancer Prevention, National Cancer Institute, Bethesda, MD (P.C.P., B.S.K.). Address reprint requests to Dr. Welch at the Dartmouth Institute for Health Policy and Clinical Practice, 35 Centerra Pkwy., HB 7251, Lebanon, NH 03766, or at h.gilbert.welch@dartmouth.edu.

 

参考文献

1. Kramer BS, Elmore JG. Projecting the benefits and harms of mammography using statistical models: proof or proofiness? J Natl Cancer Inst 2015;107(7).

2. Berry DA, Cronin KA, Plevritis SK, et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med 2005;353:1784-1792

3. Use of mammography among women 40 years of age and over, by selected characteristics: United States, selected years 1987–2008. Atlanta: Centers for Disease Control and Prevention (http://www.cdc.gov/nchs/data/hus/2010/086.pdf).

4. SEER*Stat Database: (1975-2012). Bethesda, MD: National Cancer Institute Surveillance Research Program, 2015 (http://www.seer.cancer.gov).

5. Merrill RM, Dearden KA. How representative are the Surveillance, Epidemiology, and End Results (SEER) program cancer data of the United States? Cancer Causes Control 2004;15:1027-1034

6. Zippin C, Lum D, Hankey BF. Completeness of hospital cancer case reporting from the SEER Program of the National Cancer Institute. Cancer 1995;76:2343-2350

7. Hudis CA. Biology before anatomy in early breast cancer — precisely the point. N Engl J Med 2015;373:2079-2080

8. Sparano JA, Gray RJ, Makower DF, et al. Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med 2015;373:2005-2014

9. Carlson RH. Lymph node status losing importance in breast cancer? Oncology Times 2011;33:31-31

10. Rauscher GH, Murphy AM, Orsi JM, Dupuy DM, Grabler PM, Weldon CB. Beyond the mammography quality standards act: measuring the quality of breast cancer screening programs. AJR Am J Roentgenol 2014;202:145-151

11. Esserman L, Shieh Y, Thompson I. Rethinking screening for breast cancer and prostate cancer. JAMA 2009;302:1685-1692

12. Bleyer A, Welch HG. Effect of three decades of screening mammography on breast-cancer incidence. N Engl J Med 2012;367:1998-2005

13. Lousdal ML, Kristiansen IS, Møller B, Støvring H. Effect of organised mammography screening on stage-specific incidence in Norway: population study. Br J Cancer 2016;114:590-596

14. Lannin DR. Effect of screening mammography on breast cancer incidence. N Engl J Med 2013;368:678-678

15. Blanks RG, Moss SM, McGahan CE, Quinn MJ, Babb PJ. Effect of NHS breast screening programme on mortality from breast cancer in England and Wales, 1990-8: comparison of observed with predicted mortality. BMJ 2000;321:665-669

16. Paci E, Duffy SW, Giorgi D, et al. Quantification of the effect of mammographic screening on fatal breast cancers: The Florence Programme 1990-96. Br J Cancer 2002;87:65-69

17. Kalager M, Zelen M, Langmark F, Adami H-O. Effect of screening mammography on breast-cancer mortality in Norway. N Engl J Med 2010;363:1203-1210

18. Park JH, Anderson WF, Gail MH. Improvements in US breast cancer survival and proportion explained by tumor size and estrogen-receptor status. J Clin Oncol 2015;33:2870-2876

19. Bleyer A, Baines C, Miller AB. Impact of screening mammography on breast cancer mortality. Int J Cancer 2016;138:2003-2012

20. Baré M, Torà N, Salas D, et al. Mammographic and clinical characteristics of different phenotypes of screen-detected and interval breast cancers in a nationwide screening program. Breast Cancer Res Treat 2015;154:403-415

21. Rostgaard K, Vaeth M, Rootzén H, Lynge E. Why did the breast cancer lymph node status distribution improve in Denmark in the pre-mammography screening period of 1978-1994? Acta Oncol 2010;49:313-321

22. Narod SA, Iqbal J, Miller AB. Why have breast cancer mortality rates declined? J Cancer Policy 2015;5:8-17

23. Wennberg JE, Staiger DO, Sharp SM, et al. Observational intensity bias associated with illness adjustment: cross sectional analysis of insurance claims. BMJ 2013;346:f549-f549

24. Kopans DB. Arguments against mammography screening continue to be based on faulty science. Oncologist 2014;19:107-112

25. Welch HG, Gorski DH, Albertsen PC. Trends in metastatic breast and prostate cancer — lessons in cancer dynamics. N Engl J Med 2015;373:1685-1687

26. Harding C, Pompei F, Burmistrov D, Welch HG, Abebe R, Wilson R. Breast cancer screening, incidence, and mortality across US counties. JAMA Intern Med 2015;175:1483-1489

27. Baker SG, Prorok PC, Kramer BS. Lead time and overdiagnosis. J Natl Cancer Inst 2014;106(12).

28. Zahl P-H, Jørgensen KJ, Gøtzsche PC. Lead-time models should not be used to estimate overdiagnosis in cancer screening. J Gen Intern Med 2014;29:1283-1286

29. Zahl PH, Maehlen J, Welch HG. The natural history of invasive breast cancers detected by screening mammography. Arch Intern Med 2008;168:2311-2316

30. Carter JL, Coletti RJ, Harris RP. Quantifying and monitoring overdiagnosis in cancer screening: a systematic review of methods. BMJ 2015;350:g7773-g7773

服务条款 | 隐私政策 | 联系我们