提示: 手机请竖屏浏览!

结核病的快速分子药物敏感性测试方法评价
Evaluation of a Rapid Molecular Drug-Susceptibility Test for Tuberculosis


Yingda L. Xie ... 呼吸系统疾病 • 2017.09.14
相关阅读
• 通过基因型测序确定合适的结核病疗法 • 利用DNA测序预测对一线结核药物的敏感性 • 病例10-2018:一名患无痛性单侧睾丸肿胀的84岁男性 • 针对TB的快速抗生素药敏试验正在进行中 • 纳米微粒可能改善结核分枝杆菌感染的诊断 • 理解广泛耐药结核的流行病学 • 潜伏性结核的治疗

最新广谱快速的高敏感性检测技术助力耐多药结核病的诊断和治疗

 

沈洪波†*,陈维政(Zheng W. Chen)†‡

† 中国科学院上海巴斯德研究所;‡ Department of Microbiology & Immunology, University of Illinois College of Medicine, Chicago, IL, USA

* 通讯作者

 

目前,结核病防治最主要的难题之一是耐药性问题。耐药结核病,尤其是耐多药结核病(MDR)和广泛耐药结核病(XDR)的治疗非常困难,治疗周期长,治愈率低1。而且,耐药结核病的精确诊断,即对耐药结核菌耐药谱的快速、准确的检测非常困难。耐药结核菌的耐药谱是确定耐药结核病临床治疗方案/用药组合的重要依据,也是关系耐药结核病治疗成败的第一步。

查看更多

摘要


背景

氟喹诺酮类和二线注射药物是耐多药结核病的治疗方案支柱,如果对这些药物也耐药,则被定义为广泛耐药结核病(extensively drug-resistant tuberculosis)。我们评估了一种自动化盒式(cartridge-based)分子学方法,直接采用痰样本检测氟喹诺酮类、氨基糖苷类和异烟肼耐药的结核分枝杆菌的准确性。

 

方法

在这项前瞻性诊断准确性研究中,我们纳入了来自中国和韩国有结核症状的成人患者,比较了试验性检测方法与表型药物敏感性检测和DNA测序两种方法。进行了Xpert MTB/RIF检测和痰培养。对结核分枝杆菌分离株进行了表型药物敏感性检测,针对katGgyrAgyrBrrs基因及eisinhA启动子区域进行了DNA测序。

 

结果

在308例结核分枝杆菌培养阳性的患者中,当使用表型药物敏感性检测作为参照标准时,该试验性检测方法检测耐药性的敏感性如下:异烟肼83.3%(95%置信区间[CI],77.1%~88.5%)、氧氟沙星88.4%(95% CI,80.2%~94.1%)、临界浓度为0.5 μg/mL的莫西沙星87.6%(95% CI,79.0%~93.7%)、临界浓度为2.0 μg/mL的莫西沙星96.2%(95% CI,87.0%~99.5%)、卡那霉素71.4%(95% CI,56.7%~83.4%),阿米卡星70.7%(95% CI,54.5%~83.9%)。该方法检测表型耐药性的特异性,对所有药物均≥94.3%,只有浓度2.0 μg/mL的莫西沙星例外(特异性,84.0% [95% CI,78.9%~88.3%])。当使用DNA测序作为参照标准时,本检测方法检测耐药相关突变的敏感性如下:异烟肼98.1%(95% CI,94.4%~99.6%)、氟喹诺酮类95.8%(95% CI,89.6%~98.8%)、卡那霉素92.7%(95% CI,80.1%~98.5%)、阿米卡星96.8%(95% CI,83.3%~99.9%),对所有药物的特异性均≥99.6%(95% CI,97.9%~100%)。

 

结论

本检测方法准确地检出了与异烟肼、氟喹诺酮类和氨基糖苷类耐药相关的结核分枝杆菌突变,有望作为快速的即时检测来指导结核病患者的治疗决策(由美国国家过敏和传染病研究所[National Institute of Allergy and Infectious Diseases]、美国国立卫生研究院[National Institutes of Health]以及中国科学技术部资助;在ClinicalTrials.gov注册号为NCT02251327)。





作者信息

Yingda L. Xie, M.D., Soumitesh Chakravorty, Ph.D., Derek T. Armstrong, M.H.S., Sandra L. Hall, M.P.H., Laura E. Via, Ph.D., Taeksun Song, Ph.D., Xing Yuan, M.D., Xiaoying Mo, Ph.D., Hong Zhu, M.D., Peng Xu, Ph.D., Qian Gao, Ph.D., Myungsun Lee, M.D., Jongseok Lee, Ph.D., Laura E. Smith, M.S., Ray Y. Chen, M.D., Joon Sung Joh, M.D., YoungSoo Cho, M.D., Xin Liu, M.D., Xianglin Ruan, M.D., Lili Liang, M.D., Nila Dharan, M.D., Sang-Nae Cho, D.V.M., Ph.D., Clifton E. Barry, III, Ph.D., Jerrold J. Ellner, M.D., Susan E. Dorman, M.D., and David Alland, M.D.
From the Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda (Y.L.X., L.E.V., R.Y.C., C.E.B.), and Johns Hopkins University School of Medicine, Baltimore (D.T.A., S.E.D.) — both in Maryland; the Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark (S.C., L.E.S., N.D., D.A.); Boston Medical Center and Boston University School of Medicine, Boston (S.L.H., J.J.E.); the International Tuberculosis Research Center, Changwon (T.S., M.L., J.L., S.-N.C.), and the National Medical Center (J.S.J.), Seoul Metropolitan Seobuk Hospital (Y.C.), and the Department of Microbiology, College of Medicine, Yonsei University (S.-N.C.), Seoul — all in South Korea; Henan Provincial Chest Hospital (X.Y., X.M., X.L., X.R., L.L.) and Sino–U.S. Tuberculosis Research Collaboration (H.Z.), Zhengzhou, and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science, Fudan University, Shanghai (P.X., Q.G.) — all in China; and the Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa (C.E.B.). Address reprint requests to Dr. Dorman at Medical University of South Carolina, 135 Rutledge Ave., Rm. 1207, MSC 752, Charleston, SC 29425, or at dorman@musc.edu.

 

参考文献

1. WHO treatment guidelines for drug-resistant tuberculosis: 2016 update. Geneva: World Health Organization, 2016 (http://www.who.int/tb/areas-of-work/drug-resistant-tb/MDRTBguidelines2016.pdf).

2. Boehme CC, Nicol MP, Nabeta P, et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet 2011;377:1495-1505

3. Cui Z, Wang J, Lu J, Huang X, Hu Z. Association of mutation patterns in gyrA/B genes and ofloxacin resistance levels in Mycobacterium tuberculosis isolates from East China in 2009. BMC Infect Dis 2011;11:78-78

4. Hazbón MH, Brimacombe M, Bobadilla del Valle M, et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2006;50:2640-2649

5. Shi R, Zhang J, Li C, Kazumi Y, Sugawara I. Emergence of ofloxacin resistance in Mycobacterium tuberculosis clinical isolates from China as determined by gyrA mutation analysis using denaturing high-pressure liquid chromatography and DNA sequencing. J Clin Microbiol 2006;44:4566-4568

6. Singh P, Jain A, Dixit P, et al. Prevalence of gyrA and B gene mutations in fluoroquinolone-resistant and -sensitive clinical isolates of Mycobacterium tuberculosis and their relationship with MIC of ofloxacin. J Antibiot (Tokyo) 2015;68:63-66

7. Wang JY, Lee LN, Lai HC, et al. Fluoroquinolone resistance in Mycobacterium tuberculosis isolates: associated genetic mutations and relationship to antimicrobial exposure. J Antimicrob Chemother 2007;59:860-865

8. Georghiou SB, Magana M, Garfein RS, Catanzaro DG, Catanzaro A, Rodwell TC. Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. PLoS One 2012;7:e33275-e33275

9. Maus CE, Plikaytis BB, Shinnick TM. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2005;49:3192-3197

10. Zhang H, Li D, Zhao L, et al. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat Genet 2013;45:1255-1260

11. Chakravorty S, Roh SS, Glass J, et al. Detection of isoniazid-, fluoroquinolone-, amikacin-, and kanamycin-resistant tuberculosis in an automated, multiplexed 10-color assay suitable for point-of-care use. J Clin Microbiol 2016;55:183-198

12. Xpert MTB/RIF. Sunnyvale, CA: Cepheid, February 2015 (package insert).

13. Slayden RA, Barry CE III. The genetics and biochemistry of isoniazid resistance in mycobacterium tuberculosis. Microbes Infect 2000;2:659-669

14. Xu C, Kreiswirth BN, Sreevatsan S, Musser JM, Drlica K. Fluoroquinolone resistance associated with specific gyrase mutations in clinical isolates of multidrug-resistant Mycobacterium tuberculosis. J Infect Dis 1996;174:1127-1130

15. Takiff HE, Salazar L, Guerrero C, et al. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother 1994;38:773-780

16. Kambli P, Ajbani K, Sadani M, et al. Correlating Minimum Inhibitory Concentrations of ofloxacin and moxifloxacin with gyrA mutations using the genotype MTBDRsl assay. Tuberculosis (Edinb) 2015;95:137-141

17. Suzuki Y, Katsukawa C, Tamaru A, et al. Detection of kanamycin-resistant Mycobacterium tuberculosis by identifying mutations in the 16S rRNA gene. J Clin Microbiol 1998;36:1220-1225

18. Kambli P, Ajbani K, Nikam C, et al. Correlating rrs and eis promoter mutations in clinical isolates of Mycobacterium tuberculosis with phenotypic susceptibility levels to the second-line injectables. Int J Mycobacteriol 2016;5:1-6

19. Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis 1998;79:3-29

20. Gikalo MB, Nosova EY, Krylova LY, Moroz AM. The role of eis mutations in the development of kanamycin resistance in Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother 2012;67:2107-2109

21. Kent PT, Kubica GP. Public health mycobacteriology — a guide for the level III laboratory. Atlanta: Centers for Disease Control, 1985.

22. Laboratory services in tuberculosis control: microscopy. Part 2. Geneva: World Health Organization, 1998.

23. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. Geneva: World Health Organization, 2014 (http://www.who.int/tb/publications/pmdt_companionhandbook/en/).

24. High-priority target product profiles for new tuberculosis diagnostics: report of a consensus meeting. Geneva: World Health Organization, 2014 (http://www.who.int/tb/publications/tpp_report/en/).

25. Molina-Moya B, Lacoma A, Prat C, et al. Diagnostic accuracy study of multiplex PCR for detecting tuberculosis drug resistance. J Infect 2015;71:220-230

26. Said HM, Kock MM, Ismail NA, et al. Evaluation of the GenoType MTBDRsl assay for susceptibility testing of second-line anti-tuberculosis drugs. Int J Tuberc Lung Dis 2012;16:104-109

27. Brossier F, Veziris N, Aubry A, Jarlier V, Sougakoff W. Detection by GenoType MTBDRsl test of complex mechanisms of resistance to second-line drugs and ethambutol in multidrug-resistant Mycobacterium tuberculosis complex isolates. J Clin Microbiol 2010;48:1683-1689

28. Tagliani E, Cabibbe AM, Miotto P, et al. Diagnostic performance of the new version (v2.0) of GenoType MTBDRsl assay for detection of resistance to fluoroquinolones and second-line injectable drugs: a multicenter study. J Clin Microbiol 2015;53:2961-2969

29. Hillemann D, Rüsch-Gerdes S, Richter E. Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol 2009;47:1767-1772

30. Tomasicchio M, Theron G, Pietersen E, et al. The diagnostic accuracy of the MTBDRplus and MTBDRsl assays for drug-resistant TB detection when performed on sputum and culture isolates. Sci Rep 2016;6:17850-17850

31. Ängeby K, Juréen P, Kahlmeter G, Hoffner SE, Schön T. Challenging a dogma: antimicrobial susceptibility testing breakpoints for Mycobacterium tuberculosis. Bull World Health Organ 2012;90:693-698

32. Sirgel FA, Warren RM, Streicher EM, Victor TC, van Helden PD, Böttger EC. gyrA Mutations and phenotypic susceptibility levels to ofloxacin and moxifloxacin in clinical isolates of Mycobacterium tuberculosis. J Antimicrob Chemother 2012;67:1088-1093

33. Poissy J, Aubry A, Fernandez C, et al. Should moxifloxacin be used for the treatment of extensively drug-resistant tuberculosis? An answer from a murine model. Antimicrob Agents Chemother 2010;54:4765-4771

34. Rigouts L, Coeck N, Gumusboga M, et al. Specific gyrA gene mutations predict poor treatment outcome in MDR-TB. J Antimicrob Chemother 2016;71:314-323

35. van Rie A, Victor TC, Richardson M, et al. Reinfection and mixed infection cause changing Mycobacterium tuberculosis drug-resistance patterns. Am J Respir Crit Care Med 2005;172:636-642

36. Hingley-Wilson SM, Casey R, Connell D, et al. Undetected multidrug-resistant tuberculosis amplified by first-line therapy in mixed infection. Emerg Infect Dis 2013;19:1138-1141

37. Brossier F, Guindo D, Pham A, et al. Performance of the new version (v2.0) of the GenoType MTBDRsl test for detection of resistance to second-line drugs in multidrug-resistant Mycobacterium tuberculosis complex strains. J Clin Microbiol 2016;54:1573-1580

38. The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs. Geneva: World Health Organization, 2016.

服务条款 | 隐私政策 | 联系我们