提示: 手机请竖屏浏览!

生物可吸收支架和金属支架用于常规PCI的比较研究
Bioresorbable Scaffolds versus Metallic Stents in Routine PCI


Joanna J. Wykrzykowska ... 心脑血管疾病 • 2017.06.15
相关阅读
• 一种生物可降解聚合物制成的超细支撑单元西罗莫司洗脱支架:远期结局 • 生物可吸收性冠状动脉支架是否即将步入终结 • 现在是不是祼金属支架终结的开始 • 药物洗脱支架和裸金属支架治疗冠心病的比较研究

生物可吸收支架的挑战和未来

 

郑博,霍勇*

北京大学第一医院

* 通讯作者

 

生物可吸收支架(bioresorbable vascular scaffold,BVS),因其理论上可以避免金属长期存留体内,同时可以长久保持血管正常功能,被认为是冠脉介入治疗的未来方向。然而,由于目前材料学和工艺的局限,相对较厚的支架小梁和结构,在一定程度上增加了支架内血栓形成的风险,限制了其在复杂病变上更加广泛的应用。本期《新英格兰医学杂志》发表的AIDA研究1,自2013年8月至2015年11月,在荷兰的五家高手术量的荷兰心脏中心共入选了1,845名接受PCI治疗的患者,随机分为BVS组(n=927)和金属平台药物洗脱支架组(n=921)。在近两年的平均随访中,主要终点靶血管失败发生率在BVS组和DES组分别为11.7%和10.7%(P=0.43),而支架内血栓的发生率在BVS组则显著升高(3.5%对9%,P<0.001)。

查看更多

摘要


背景

在经皮冠状动脉介入(PCI)中,开发生物可吸收血管支架的目的是克服药物洗脱支架的缺点。我们进行了一项研究者发起的随机试验,目的是在常规临床实践背景下,比较依维莫司洗脱生物可吸收支架与依维莫司洗脱金属支架。

 

方法

我们将1,845例接受PCI的患者随机分组接受生物可吸收血管支架(924例)或金属支架(921例)。主要终点是靶血管治疗失败(心脏性死亡、靶血管心肌梗死或靶血管血运重建构成的复合终点)。出于安全考虑,数据和安全监察委员会建议提前报告研究结果。本报告提供有关终点事件的描述性信息。

 

结果

中位随访时间为707日。靶血管失败事件在可吸收支架组中有105例患者,金属支架组中有94例患者(2年累积事件发生率分别为11.7%和10.7%;风险比1.12;95%置信区间[CI],0.85~1.48;P=0.43)。事件发生率基于到事件发生时间分析中的Kaplan-Meier估计得出。心脏性死亡事件在可吸收支架组中有18例,金属支架组中有23例(2年累积事件发生率分别为2.0%和2.7%),靶血管心肌梗死事件在可吸收支架组中有48例,金属支架组中有30例(2年累积事件发生率分别为5.5%和3.2%),靶血管血运重建在可吸收支架组中有76例,金属支架组中有65例(2年累积事件发生率分别为8.7%和7.5%)。在确定或疑似支架血栓形成方面,可吸收支架组中有31例,而常规药物洗脱支架组仅8例(2年累积事件发生率相比分别为3.5%和0.9%;风险比3.87;95% CI,1.78~8.42;P<0.001)。

 

结论

这项在PCI患者中的研究初步显示,接受生物可吸收支架与金属支架的两组患者在靶血管失败率方面没有显著差异。在2年的随访中,可吸收支架发生支架血栓形成的比例比金属支架高(Abbott Vascular资助;AIDA在ClinicalTrials.gov注册号为NCT01858077)。





作者信息

Joanna J. Wykrzykowska, M.D., Ph.D., Robin P. Kraak, M.D., Sjoerd H. Hofma, M.D., Ph.D., Rene J. van der Schaaf, M.D., Ph.D., E. Karin Arkenbout, M.D., Ph.D., Alexander J. IJsselmuiden, M.D., Ph.D., Jo毛lle Elias, M.D., Ivo M. van Dongen, M.D., Ruben Y.G. Tijssen, M.D., Karel T. Koch, M.D., Ph.D., Jan Baan, Jr., M.D., Ph.D., M. Marije Vis, M.D., Ph.D., Robbert J. de Winter, M.D., Ph.D., Jan J. Piek, M.D., Ph.D., Jan G.P. Tijssen, Ph.D., and Jose P.S. Henriques, M.D., Ph.D., for聽the AIDA Investigators*
From the AMC Heartcenter, Academic Medical Center–University of Amsterdam (J.J.W., R.P.K., J.E., I.M.D., R.Y.G.T., K.T.K., J.B., M.M.V., R.J.W., J.J.P., J.G.P.T., J.P.S.H.), and the Department of Cardiology, Onze Lieve Vrouwe Gasthuis (R.J.S.), Amsterdam, the Department of Cardiology, Medical Center Leeuwarden, Leeuwarden (S.H.H.), the Department of Cardiology, Tergooi Hospital, Blaricum (E.K.A.), and the Department of Cardiology, Albert Schweitzer Hospital, Dordrecht (A.J.IJ.) — all in the Netherlands.Address reprint requests to Dr. Wykrzykowska at the Academic Medical Center–University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands, or at j.j.wykrzykowska@amc.uva.nl. *A complete list of investigators in the Amsterdam Investigator-Initiated Absorb Strategy All-Comers Trial (AIDA) is provided in the Supplementary Appendix, available at NEJM.org.

 

参考文献

1. Palmerini T, Benedetto U, Biondi-Zoccai G, et al. Long-term safety of drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. J Am Coll Cardiol 2015;65:2496-2507

2. Windecker S, Kolh P, Alfonso F, et al. 2014 ESC/EACTS guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 2014;35:2541-2619

3. Smits PC, Vlachojannis GJ, McFadden EP, et al. Final 5-year follow-up of a randomized controlled trial of everolimus- and paclitaxel-eluting stents for coronary revascularization in daily practice: the COMPARE trial (A Trial of Everolimus-Eluting Stents and Paclitaxel Stents for Coronary Revascularization in Daily Practice). JACC Cardiovasc Interv 2015;8:1157-1165

4. Jensen LO, Thayssen P, Christiansen EH, et al. Safety and efficacy of everolimus- versus sirolimus-eluting stents: 5-year results from SORT OUT IV. J Am Coll Cardiol 2016;67:751-762

5. Nakazawa G, Otsuka F, Nakano M, et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol 2011;57:1314-1322

6. Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 2006;48:193-202

7. Serruys PW, Garcia-Garcia HM, Onuma Y. From metallic cages to transient bioresorbable scaffolds: change in paradigm of coronary revascularization in the upcoming decade? Eur Heart J 2012;33:16-25b

8. Ellis SG, Kereiakes DJ, Metzger DC, et al. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N Engl J Med 2015;373:1905-1915

9. Felix CM, Fam JM, Diletti R, et al. Mid- to long-term clinical outcomes of patients treated with the everolimus-eluting bioresorbable vascular scaffold: the BVS Expand Registry. JACC Cardiovasc Interv 2016;9:1652-1663

10. Fam JM, Felix C, van Geuns RJ, et al. Initial experience with everolimus-eluting bioresorbable vascular scaffolds for treatment of patients presenting with acute myocardial infarction: a propensity-matched comparison to metallic drug eluting stents 18-month follow-up of the BVS STEMI first study. EuroIntervention 2016;12:30-37

11. Capodanno D, Gori T, Nef H, et al. Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention 2015;10:1144-1153

12. Ishibashi Y, Nakatani S, Onuma Y. Definite and probable bioresorbable scaffold thrombosis in stable and ACS patients. EuroIntervention 2015;11:e1-e2

13. Onuma Y, Sotomi Y, Shiomi H, et al. Two-year clinical, angiographic, and serial optical coherence tomographic follow-up after implantation of an everolimus-eluting bioresorbable scaffold and an everolimus-eluting metallic stent: insights from the randomised ABSORB Japan trial. EuroIntervention 2016;12:1090-1101

14. Chevalier B, Onuma Y, van Boven AJ, et al. Randomised comparison of a bioresorbable everolimus-eluting scaffold with a metallic everolimus-eluting stent for ischaemic heart disease caused by de novo native coronary artery lesions: the 2-year clinical outcomes of the ABSORB II trial. EuroIntervention 2016;12:1102-1107

15. Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet 2016;388:2479-2491

16. Woudstra P, Grundeken MJ, Kraak RP, et al. Amsterdam Investigator-initiateD Absorb strategy all-comers trial (AIDA trial): a clinical evaluation comparing the efficacy and performance of ABSORB everolimus-eluting bioresorbable vascular scaffold strategy vs the XIENCE family (XIENCE PRIME or XIENCE Xpedition) everolimus-eluting coronary stent strategy in the treatment of coronary lesions in consecutive all-comers: rationale and study design. Am Heart J 2014;167:133-140

17. Cutlip DE, Windecker S, Mehran R, et al. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation 2007;115:2344-2351

18. Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. Circulation 2012;126:2020-2035

19. Non-inferiority clinical trials to establish effectiveness: guidance for industry. Silver Spring, MD: Food and Drug Administration, November 2016 (http://www.fda.gov/ucm/groups/fdagov-public/@fdagov-drugs-gen/documents/document/ucm202140.pdf).

20. Com-Nougue C, Rodary C, Patte C. How to establish equivalence when data are censored: a randomized trial of treatments for B non-Hodgkin lymphoma. Stat Med 1993;12:1353-1364

21. Collet C, Asano T, Sotomi Y, et al. Early, late and very late incidence of bioresorbable scaffold thrombosis: a systematic review and meta-analysis of randomized clinical trials and observational studies. Minerva Cardioangiol 2017;65:32-51

22. Räber L, Brugaletta S, Yamaji K, et al. Very late scaffold thrombosis: intracoronary imaging and histopathological and spectroscopic findings. J Am Coll Cardiol 2015;66:1901-1914

23. Puricel S, Cuculi F, Weissner M, et al. Bioresorbable coronary scaffold thrombosis: multicenter comprehensive analysis of clinical presentation, mechanisms, and predictors. J Am Coll Cardiol 2016;67:921-931

24. Karanasos A, Van Mieghem N, van Ditzhuijzen N, et al. Angiographic and optical coherence tomography insights into bioresorbable scaffold thrombosis: single-center experience. Circ Cardiovasc Interv 2015;8:e002369-e002369

25. Kolandaivelu K, Swaminathan R, Gibson WJ, et al. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation 2011;123:1400-1409

26. Bourantas CV, Papafaklis MI, Kotsia A, et al. Effect of the endothelial shear stress patterns on neointimal proliferation following drug-eluting bioresorbable vascular scaffold implantation: an optical coherence tomography study. JACC Cardiovasc Interv 2014;7:315-324

27. Ueda T, Uemura S, Watanabe M, et al. Thin-cap fibroatheroma and large calcification at the proximal stent edge correlate with a high proportion of uncovered stent struts in the chronic phase. Coron Artery Dis 2016;27:376-384

28. Nakazawa G, Nakano M, Otsuka F, et al. Evaluation of polymer-based comparator drug-eluting stents using a rabbit model of iliac artery atherosclerosis. Circ Cardiovasc Interv 2011;4:38-46

29. Sotomi Y, Suwannasom P, Serruys PW, Onuma Y. Possible mechanical causes of scaffold thrombosis: insights from case reports with intracoronary imaging. EuroIntervention 2017;12:1747-1756

30. Mauri L, Kereiakes DJ, Yeh RW, et al. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. N Engl J Med 2014;371:2155-2166

服务条款 | 隐私政策 | 联系我们