提示: 手机请竖屏浏览!

在危重成人患者中应用平衡晶体液或生理盐水的比较
Balanced Crystalloids versus Saline in Critically Ill Adults


Matthew W. Semler ... 其他 • 2018.03.01
相关阅读
• 接受平衡晶体液治疗的患者较少发生肾脏不良事件 • 在非危重成人患者中应用平衡晶体液或生理盐水的比较

住院患者应用平衡晶体液可能较生理盐水更佳

 

Peter C. Hou(侯全益)†*,Raghu R. Seethala†,宋瑞‡,Imoigele P. Aisiku†

†Division of Emergency Critical Care Medicine, Department of Emergency Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA; ‡Department of Education, Longwood Translational Medicine China Initiative, Boston, MA, USA

*通讯作者

 

生理盐水是医疗中最常用的晶体液,然而大量生理盐水的输注会引起高氯性代谢性酸中毒,导致潜在的尚不明确的不良反应。因此,虽然这方面高质量研究的数量尚少,但专家们建议“对于大多数急性病患者来说,等渗平衡盐溶液是一种实用的初始复苏液体1”。在2018年3月1日出版的《新英格兰医学杂志》中,Self等的《在非危重成人患者中应用平衡晶体液或生理盐水的比较》及Semler等的相关文章《在危重成人患者中应用平衡晶体液或生理盐水的比较》,都进一步支持了平衡液的应用优于盐水2,3

查看更多

摘要


背景

平衡晶体液与生理盐水均可用于危重成人患者静脉输液,但我们尚不知晓哪种液体可获得较好的临床结局。

 

方法

我们在一家学术中心的五个重症监护治疗病房开展了一项实用性、群组随机、多重交叉临床试验;根据患者所入住监护病房随机分组,我们将15,802例成年患者分组,分别接受生理盐水(0.9%氯化钠)或平衡晶体液(乳酸林格液或复方电解质注射液[勃脉力A])治疗。主要结局是30日内的主要肾脏不良事件——任何原因引起的死亡、新增肾脏替代治疗或持续性肾功能不全(定义为肌酐水平升高至≥基线水平的200%)等的复合结局——所有结果在出院或30日时截尾,以先到者为准。

 

结果

在平衡晶体液组的7,942例患者中,1,139例(14.3%)出现主要肾脏不良事件,而生理盐水组7,860例患者中有1,211例(15.4%)出现不良事件(边缘比值比0.91,95%置信区间[CI],0.84~0.99;条件比值比0.90;95% CI,0.82~0.99;P=0.04)。平衡晶体液组30日时院内死亡率为10.3%,生理盐水组为11.1%(P=0.06)。新增肾脏替代治疗的发生率分别为2.5%和2.9%(P=0.08),持续性肾功能不全的发生率分别为6.4%和6.6%(P=0.60)。

 

结论

在危重成人患者中,与静脉输入生理盐水相比,静脉输入平衡晶体液可降低任何原因导致的死亡、新增肾脏替代治疗或持续肾功能不全复合结局的发生率(由范德比尔特临床和转化研究所[Vanderbilt Institute for Clinical and Translational Research]等资助;SMART-MED和SMART-SURG在ClinicalTrials.gov注册号为NCT02444988和NCT02547779)。





作者信息

Matthew W. Semler, M.D., Wesley H. Self, M.D., M.P.H., Jonathan P. Wanderer, M.D., Jesse M. Ehrenfeld, M.D., M.P.H., Li Wang, M.S., Daniel W. Byrne, M.S., Joanna L. Stollings, Pharm.D., Avinash B. Kumar, M.D., Christopher G. Hughes, M.D., Antonio Hernandez, M.D., Oscar D. Guillamondegui, M.D., M.P.H., Addison K. May, M.D., et al., for the SMART Investigators and the Pragmatic Critical Care Research Group*
From the Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine (M.W.S., J.D.C., G.R.B., T.W.R.), the Departments of Emergency Medicine (W.H.S.), Anesthesiology (J.P.W., J.M.E., A.B.K., C.G.H., A.H., L. Weavind, A.D.S.), Biomedical Informatics (J.P.W., J.M.E.), Surgery (J.M.E., O.D.G., A.K.M.), Health Policy (J.M.E.), Biostatistics (L. Wang, D.W.B.), and Pharmaceutical Services (J.L.S.), and the Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease and Integrated Program for Acute Kidney Disease (E.D.S.) — all at Vanderbilt University Medical Center, Nashville. Address reprint requests to Dr. Rice at the Department of Medicine, Vanderbilt University Medical Center, T-1218 MCN, 1161 21st Ave. S., Nashville, TN 37232, or at todd.rice@vanderbilt.edu. *A complete list of the SMART Investigators is provided in the Supplementary Appendix, available at NEJM.org.

 

参考文献

1. Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med 2013;369:1243-1251.

2. Finfer S, Liu B, Taylor C, et al. Resuscitation fluid use in critically ill adults: an international cross-sectional study in 391 intensive care units. Crit Care 2010;14:R185-R185.

3. Awad S, Allison SP, Lobo DN. The history of 0.9% saline. Clin Nutr 2008;27:179-188.

4. Yunos NM, Kim IB, Bellomo R, et al. The biochemical effects of restricting chloride-rich fluids in intensive care. Crit Care Med 2011;39:2419-2424.

5. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 2012;308:1566-1572.

6. Raghunathan K, Shaw A, Nathanson B, et al. Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis. Crit Care Med 2014;42:1585-1591.

7. Rochwerg B, Alhazzani W, Sindi A, et al. Fluid resuscitation in sepsis: a systematic review and network meta-analysis. Ann Intern Med 2014;161:347-355.

8. Hammond NE, Taylor C, Finfer S, et al. Patterns of intravenous fluid resuscitation use in adult intensive care patients between 2007 and 2014: an international cross-sectional study. PLoS One 2017;12(5):e0176292-e0176292.

9. Shaw AD, Raghunathan K, Peyerl FW, Munson SH, Paluszkiewicz SM, Schermer CR. Association between intravenous chloride load during resuscitation and in-hospital mortality among patients with SIRS. Intensive Care Med 2014;40:1897-1905.

10. Shaw AD, Bagshaw SM, Goldstein SL, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg 2012;255:821-829.

11. Young P, Bailey M, Beasley R, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA 2015;314:1701-1710.

12. Semler MW, Wanderer JP, Ehrenfeld JM, et al. Balanced crystalloids versus saline in the intensive care unit: the SALT randomized trial. Am J Respir Crit Care Med 2017;195:1362-1372.

13. Semler MW, Self WH, Wang L, et al. Balanced crystalloids versus saline in the intensive care unit: study protocol for a cluster-randomized, multiple-crossover trial. Trials 2017;18:129-129.

14. Self WH, Semler MW, Wanderer JP, et al. Balanced crystalloids versus saline in noncritically ill adults. N Engl J Med 2018;378:819-828.

15. Self WH, Semler MW, Wanderer JP, et al. Saline versus balanced crystalloids for intravenous fluid therapy in the emergency department: study protocol for a cluster-randomized, multiple-crossover trial. Trials 2017;18:178-178.

16. Semler MW, Rice TW, Shaw AD, et al. Identification of major adverse kidney events within the electronic health record. J Med Syst 2016;40:167-167.

17. Shaw A. Models of preventable disease: contrast-induced nephropathy and cardiac surgery-associated acute kidney injury. Contrib Nephrol 2011;174:156-162.

18. Palevsky PM, Molitoris BA, Okusa MD, et al. Design of clinical trials in acute kidney injury: report from an NIDDK workshop on trial methodology. Clin J Am Soc Nephrol 2012;7:844-850.

19. Kashani K, Al-Khafaji A, Ardiles T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 2013;17:R25-R25.

20. Kellum JA, Zarbock A, Nadim MK. What endpoints should be used for clinical studies in acute kidney injury? Intensive Care Med 2017;43:901-903.

21. Závada J, Hoste E, Cartin-Ceba R, et al. A comparison of three methods to estimate baseline creatinine for RIFLE classification. Nephrol Dial Transplant 2010;25:3911-3918.

22. Kidney Disease Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int 2012;2:Suppl:1-138.

23. Parienti J-J, Kuss O. Cluster-crossover design: a method for limiting clusters level effect in community-intervention studies. Contemp Clin Trials 2007;28:316-323.

24. Turner RM, White IR, Croudace T. Analysis of cluster randomized cross-over trial data: a comparison of methods. Stat Med 2007;26:274-289.

25. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604-612.

26. Shahian DM, Wolf RE, Iezzoni LI, Kirle L, Normand S-LT. Variability in the measurement of hospital-wide mortality rates. N Engl J Med 2010;363:2530-2539.

27. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR. Etiology of metabolic acidosis during saline resuscitation in endotoxemia. Shock 1998;9:364-368.

28. Kellum JA, Song M, Almasri E. Hyperchloremic acidosis increases circulating inflammatory molecules in experimental sepsis. Chest 2006;130:962-967.

29. Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest 1983;71:726-735.

30. Zhou F, Peng Z-Y, Bishop JV, Cove ME, Singbartl K, Kellum JA. Effects of fluid resuscitation with 0.9% saline versus a balanced electrolyte solution on acute kidney injury in a rat model of sepsis. Crit Care Med 2014;42(4):e270-e278.

31. Kellum JA, Song M, Venkataraman R. Effects of hyperchloremic acidosis on arterial pressure and circulating inflammatory molecules in experimental sepsis. Chest 2004;125:243-248.

32. Kellum JA. Fluid resuscitation and hyperchloremic acidosis in experimental sepsis: improved short-term survival and acid-base balance with Hextend compared with saline. Crit Care Med 2002;30:300-305.

33. Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and Plasma-Lyte 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg 2012;256:18-24.

34. Krajewski ML, Raghunathan K, Paluszkiewicz SM, Schermer CR, Shaw AD. Meta-analysis of high- versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg 2015;102:24-36.

35. Sen A, Keener CM, Sileanu FE, et al. Chloride content of fluids used for large-volume resuscitation is associated with reduced survival. Crit Care Med 2017;45(2):e146-e153.

36. Rochwerg B, Alhazzani W, Gibson A, et al. Fluid type and the use of renal replacement therapy in sepsis: a systematic review and network meta-analysis. Intensive Care Med 2015;41:1561-1571.

37. Wunsch H, Angus DC, Harrison DA, et al. Variation in critical care services across North America and Western Europe. Crit Care Med 2008;36(10):2787-93, e1-9.

服务条款 | 隐私政策 | 联系我们