提示: 手机请竖屏浏览!

BRCA2在卵巢发育和功能中的重要作用
Essential Role of BRCA2 in Ovarian Development and Function


Ariella Weinberg-Shukron ... 肿瘤 妇产科和儿科 • 2018.09.13

摘要


卵巢发育不全的原因仍未完全了解。患XX卵巢发育不全的两姐妹在BRCA2基因中携带复合杂合截短突变,导致BRCA2蛋白水平降低,对DNA损伤的反应受损,这引起染色体断裂,以及RAD51不能被募集到双链DNA断裂处。这两姐妹还患小头畸形,姐姐5岁时被诊断为白血病,已处于长期缓解状态。BRCA2直系同源基因无效的果蝇突变体是不育的,并且两种性别均存在性腺发育不全。这些结果揭示了BRCA2的新作用,并突出了减数分裂期间重组的关键基因对卵巢发育的重要性(由以色列科学基金会等资助)。





作者信息

Ariella Weinberg-Shukron, Ph.D., Mariana Rachmiel, M.D., Paul Renbaum, Ph.D., Suleyman Gulsuner, M.D., Ph.D., Tom Walsh, Ph.D., Orit Lobel, M.Sc., Amatzia Dreifuss, B.Sc., Avital Ben-Moshe, M.Sc., Sharon Zeligson, M.Sc., Reeval Segel, M.D., Tikva Shore, B.Sc., Rachel Kalifa, M.Sc., Michal Goldberg, Ph.D., Mary-Claire King, Ph.D., Offer Gerlitz, Ph.D., Ephrat Levy-Lahad, M.D., and David Zangen, M.D.
From the Medical Genetics Institute, Shaare Zedek Medical Center (A.W.-S., P.R., O.L., S.Z., R.S., E.L.-L.), the Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School (A.W.-S., E.L.-L., D.Z.), the Department of Developmental Biology and Cancer Research, IMRIC (Institute for Medical Research, Israel–Canada), Faculty of Medicine, Hebrew University of Jerusalem (A.D., T.S., R.K., O.G.), the Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem (A.B.-M., M.G.), and the Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center (D.Z.), Jerusalem, and the Pediatric Endocrinology Clinic, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (M.R.) — all in Israel; and the Division of Medical Genetics, Department of Medicine and the Department of Genome Sciences, University of Washington, Seattle (S.G., T.W., M.-C.K.). Address reprint requests to Dr. Zangen at the Division of Pediatric Endocrinology and Diabetes, Hadassah Hebrew University Medical Center, Jerusalem 91240, Israel, or at zangend@hadassah.org.il; Dr. Gerlitz at the Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel, or at offerg@ekmd.huji.ac.il; or Dr. Levy-Lahad at the Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 91031, Israel, or at lahad@szmc.org.il.

 

参考文献

1. Rossetti R, Ferrari I, Bonomi M, Persani L. Genetics of primary ovarian insufficiency. Clin Genet 2017;91:183-198.

2. Tenenbaum-Rakover Y, Weinberg-Shukron A, Renbaum P, et al. Minichromosome maintenance complex component 8 (MCM8) gene mutations result in primary gonadal failure. J Med Genet 2015;52:391-399.

3. Smirin-Yosef P, Zuckerman-Levin N, Tzur S, et al. A biallelic mutation in the homologous recombination repair gene SPIDR is associated with human gonadal dysgenesis. J Clin Endocrinol Metab 2017;102:681-688.

4. Eggers S, Ohnesorg T, Sinclair A. Genetic regulation of mammalian gonad development. Nat Rev Endocrinol 2014;10:673-683.

5. Navon Elkan P, Pierce SB, Segel R, et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med 2014;370:921-931.

6. Gazy I, Zeevi DA, Renbaum P, et al. TODRA, a lncRNA at the RAD51 locus, is oppositely regulated to RAD51, and enhances RAD51-dependent DSB (double strand break) repair. PLoS One 2015;10(7):e0134120-e0134120.

7. Klovstad M, Abdu U, Schüpbach T. Drosophila brca2 is required for mitotic and meiotic DNA repair and efficient activation of the meiotic recombination checkpoint. PLoS Genet 2008;4(2):e31-e31.

8. Howlett NG, Taniguchi T, Olson S, et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 2002;297:606-609.

9. Pellegrini L, Yu DS, Lo T, et al. Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 2002;420:287-293.

10. Jensen RB, Carreira A, Kowalczykowski SC. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 2010;467:678-683.

11. Sekelsky JJ, Brodsky MH, Burtis KC. DNA repair in Drosophila: insights from the Drosophila genome sequence. J Cell Biol 2000;150(2):F31-F36.

12. Brough R, Wei D, Leulier S, Lord CJ, Rong YS, Ashworth A. Functional analysis of Drosophila melanogaster BRCA2 in DNA repair. DNA Repair (Amst) 2008;7:10-19.

13. Long DT, Räschle M, Joukov V, Walter JC. Mechanism of RAD51-dependent DNA interstrand cross-link repair. Science 2011;333:84-87.

14. Ceccaldi R, Sarangi P, D’Andrea AD. The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol 2016;17:337-349.

15. Rodríguez-Marí A, Wilson C, Titus TA, et al. Roles of brca2 (fancd1) in oocyte nuclear architecture, gametogenesis, gonad tumors, and genome stability in zebrafish. PLoS Genet 2011;7(3):e1001357-e1001357.

16. Wagner JE, Tolar J, Levran O, et al. Germline mutations in BRCA2: shared genetic susceptibility to breast cancer, early onset leukemia, and Fanconi anemia. Blood 2004;103:3226-3229.

17. Mehta PA. Tolar J. Fanconi anemia. In: GeneReviews. March 8, 2018 (https://www.ncbi.nlm.nih.gov/books/NBK1116/).

18. Auerbach AD. Fanconi anemia and its diagnosis. Mutat Res 2009;668:4-10.

19. Petryk A, Kanakatti Shankar R, Giri N, et al. Endocrine disorders in Fanconi anemia: recommendations for screening and treatment. J Clin Endocrinol Metab 2015;100:803-811.

20. Sklavos MM, Giri N, Stratton P, Alter BP, Pinto LA. Anti-Müllerian hormone deficiency in females with Fanconi anemia. J Clin Endocrinol Metab 2014;99:1608-1614.

21. Fu C, Begum K, Overbeek PA. Primary ovarian insufficiency induced by Fanconi anemia E mutation in a mouse model. PLoS One 2016;11(3):e0144285-e0144285.

22. Alter BP, Frissora CL, Halpérin DS, et al. Fanconi’s anaemia and pregnancy. Br J Haematol 1991;77:410-418.

23. Feben C, Spencer C, Lochan A, et al. Biallelic BRCA2 mutations in two black South African children with Fanconi anaemia. Fam Cancer 2017;16:441-446.

24. Dodgshun AJ, Sexton-Oates A, Saffery R, Sullivan MJ. Biallelic FANCD1/BRCA2 mutations predisposing to glioblastoma multiforme with multiple oncogenic amplifications. Cancer Genet 2016;209:53-56.

25. Svojgr K, Sumerauer D, Puchmajerova A, et al. Fanconi anemia with biallelic FANCD1/BRCA2 mutations — case report of a family with three affected children. Eur J Med Genet 2016;59:152-157.

26. Meyer S, Tischkowitz M, Chandler K, Gillespie A, Birch JM, Evans DG. Fanconi anaemia, BRCA2 mutations and childhood cancer: a developmental perspective from clinical and epidemiological observations with implications for genetic counselling. J Med Genet 2014;51:71-75.

27. Myers K, Davies SM, Harris RE, et al. The clinical phenotype of children with Fanconi anemia caused by biallelic FANCD1/BRCA2 mutations. Pediatr Blood Cancer 2012;58:462-465.

28. Stephens PJ, Greenman CD, Fu B, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011;144:27-40.

29. Inaki K, Liu ET. Structural mutations in cancer: mechanistic and functional insights. Trends Genet 2012;28:550-559.

服务条款 | 隐私政策 | 联系我们