提示: 手机请竖屏浏览!

MRI靶向活检或标准活检用于前列腺癌诊断的比较
MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis


Veeru Kasivisvanathan ... 肿瘤 • 2018.05.10
相关阅读
• ASCO 2017报告——泌尿生殖系统癌症

疑似前列腺癌,先系统穿刺还是靶向穿刺

 

孙颖浩

海军军医大学

 

多参数磁共振技术是近年来前列腺疾病诊断的重要进展之一,根据欧洲泌尿外科学会(EAU)指南,对于首次穿刺未找到肿瘤的患者,支持采用该检查手段。但是,首次穿刺的患者在前列腺穿刺活检之前是否应常规接受多参数磁共振检查?对此还存在很多争议,以往尚无高质量研究支持其广泛应用。不过,最近一项发表在《新英格兰医学杂志》上的研究为我们提供了证据,支持以磁共振为基础的靶向穿刺应用于前列腺癌的诊断1

查看更多

摘要


背景

伴或不伴靶向活检的多参数磁共振成像(MRI)是标准经直肠超声引导下活检的替代方法,用于对未进行过活检、前列腺特异性抗原水平升高的男性进行前列腺癌检测。但相关比较性证据有限。

 

方法

我们进行了一项多中心、随机、非劣效性试验,将临床疑似前列腺癌且未接受过活检的男性分组,分别进行伴或不伴靶向活检的MRI检查,或标准经直肠超声引导下活检。如果MRI提示前列腺癌,则对MRI靶向活检组的男性进行靶向活检(不使用标准空芯针穿刺活检);如果MRI结果不提示前列腺癌,则不进行活检。标准活检为10~12针的经直肠超声引导下活检。主要结局是诊断为有临床意义癌症的男性比例。次要结局包括诊断为无临床意义癌症的男性比例。

 

结果

共有500名男性经随机分组。在MRI靶向活检组中,252名男性中有71名(28%)的MRI结果不提示前列腺癌,因此未进行活检。MRI靶向活检组中有95名男性(38%)被检出有临床意义癌症,而标准活检组的248名男性中有64名(26%)被检出有临床意义癌症(校正后差异,12个百分点;95%置信区间[CI],4~20;P=0.005)。伴或不伴靶向活检的MRI检查不劣于标准活检,且95% CI表明该方法优于标准活检。MRI靶向活检组被诊断为无临床意义癌症的男性比标准活检组少(校正后差异,-13个百分点;95% CI,-19~-7;P<0.001)。

 

结论

对于未接受过活检,有前列腺癌临床风险的男性,采用活检前MRI和MRI靶向活检进行风险评估优于标准经直肠超声引导下活检(由英国国家卫生研究院[National Institute for Health Research]和欧洲泌尿科学会研究基金会[European Association of Urology Research Foundation]资助;PRECISION在ClinicalTrials.gov注册号为NCT02380027)。





作者信息

Veeru Kasivisvanathan, M.R.C.S., Antti S. Rannikko, Ph.D., Marcelo Borghi, M.D., Valeria Panebianco, M.D., Lance A. Mynderse, M.D., Markku H. Vaarala, Ph.D., Alberto Briganti, Ph.D., Lars Budäus, M.D., Giles Hellawell, F.R.C.S.(Urol.), Richard G. Hindley, F.R.C.S.(Urol.), Monique J. Roobol, Ph.D., Scott Eggener, M.D., Maneesh Ghei, F.R.C.S.(Urol.), Arnauld Villers, M.D., Franck Bladou, M.D., Geert M. Villeirs, Ph.D., Jaspal Virdi, F.R.C.S.(Urol.), Silvan Boxler, M.D., Grégoire Robert, Ph.D., Paras B. Singh, F.R.C.S.(Urol.), Wulphert Venderink, M.D., Boris A. Hadaschik, M.D., Alain Ruffion, Ph.D., Jim C. Hu, M.D., Daniel Margolis, M.D., Sébastien Crouzet, Ph.D., Laurence Klotz, M.D., Samir S. Taneja, M.D., Peter Pinto, M.D., Inderbir Gill, M.D., Clare Allen, F.R.C.R., Francesco Giganti, M.D., Alex Freeman, F.R.C.Path., Stephen Morris, Ph.D., Shonit Punwani, F.R.C.R., Norman R. Williams, Ph.D., Chris Brew-Graves, M.Sc., Jonathan Deeks, Ph.D., Yemisi Takwoingi, Ph.D., Mark Emberton, F.R.C.S.(Urol.), and Caroline M. Moore, F.R.C.S.(Urol.) for the PRECISION Study Group Collaborators*
From University College London (UCL) and UCL Hospitals NHS Foundation Trust (V.K., C.A., F.G., A.F., S.M., S.P., M.E., C.M.M.), London North West Healthcare NHS Trust (G.H.), Whittington Health NHS Trust (M.G.), Royal Free London NHS Foundation Trust (P.B.S.), and UCL Surgical and Interventional Trials Unit (N.R.W., C.B.-G.), London, Hampshire Hospitals NHS Foundation Trust, Basingstoke (R.G.H.), Princess Alexandra Hospital NHS Trust, Harlow (J.V.), and the Institute of Applied Health Research and the NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham (J.D., Y.T.) — all in the United Kingdom; Helsinki University and Helsinki University Hospital, Helsinki (A.S.R.), and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu (M.H.V.) — all in Finland; Centro de Urología, Buenos Aires (M.B.); Sapienza University, Rome (V.P.), and IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan (A.B.) — all in Italy; Mayo Clinic, Rochester, MN (L.A.M.); Martini Klinik, Hamburg (L.B.), University Hospital Essen, Essen (B.A.H.), and University Hospital Heidelberg, Heidelberg (B.A.H.) — all in Germany; Erasmus University Medical Center, Rotterdam (M.J.R.), and Radboud University Medical Center, Nijmegen (W.V.) — both in the Netherlands; University of Chicago, Chicago (S.E.); Université de Lille and Centre Hospitalier Universitaire Lille, Lille (A.V.), Université de Bordeaux and Bordeaux Pellegrin University Hospital, Bordeaux (G.R.), and Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud (A.R.), and Hospices Civils de Lyon of the Hôpital Edouard Herriot (S.C.), Lyon — all in France; Jewish General Hospital, Montreal (F.B.), and Sunnybrook Health Sciences Centre, Toronto (L.K.) — both in Canada; Ghent University Hospital, Ghent, Belgium (G.M.V.); University Hospital Bern, Bern, Switzerland (S.B.); Weill Cornell Medicine, New York–Presbyterian Hospital (J.C.H., D.M.), and New York University Langone Medical Center (S.S.T.), New York; National Institutes of Health, Bethesda, MD (P.P.); and the University of Southern California Institute of Urology, Keck School of Medicine, Los Angeles (I.G.). Address reprint requests to Dr. Kasivisvanathan at the Division of Surgery and Interventional Science, UCL, 3rd Fl., Charles Bell House, 43-45 Foley St., London W1W 7TS, United Kingdom, or at veeru.kasi@ucl.ac.uk. *A complete list of members of the PRECISION Study Group is provided in the Supplementary Appendix, available at NEJM.org.

 

参考文献

1. Ahmed HU, El-Shater Bosaily A, Brown LC, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 2017;389:815-822.

2. Hamdy FC, Donovan JL, Lane JA, et al. 10-Year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N Engl J Med 2016;375:1415-1424.

3. Wilt TJ, Jones KM, Barry MJ, et al. Follow-up of prostatectomy versus observation for early prostate cancer. N Engl J Med 2017;377:132-142.

4. Maurice MJ, Abouassaly R, Kim SP, Zhu H. Contemporary nationwide patterns of active surveillance use for prostate cancer. JAMA Intern Med 2015;175:1569-1571.

5. Chen RC, Basak R, Meyer AM, et al. Association between choice of radical prostatectomy, external beam radiotherapy, brachytherapy, or active surveillance and patient-reported quality of life among men with localized prostate cancer. JAMA 2017;317:1141-1150.

6. Eldefrawy A, Katkoori D, Abramowitz M, Soloway MS, Manoharan M. Active surveillance vs. treatment for low-risk prostate cancer: a cost comparison. Urol Oncol 2013;31:576-580.

7. Egger SJ, Calopedos RJ, O’Connell DL, Chambers SK, Woo HH, Smith DP. Long-term psychological and quality-of-life effects of active surveillance and watchful waiting after diagnosis of low-risk localised prostate cancer. Eur Urol 2017 August 26 (Epub ahead of print).

8. Dickinson L, Ahmed HU, Allen C, et al. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol 2011;59:477-494.

9. Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS Prostate Imaging — Reporting and Data System: 2015, Version 2. Eur Urol 2016;69:16-40.

10. Moore CM, Kasivisvanathan V, Eggener S, et al. Standards of Reporting for MRI-Targeted Biopsy Studies (START) of the prostate: recommendations from an International Working Group. Eur Urol 2013;64:544-552.

11. Rhudd A, McDonald J, Emberton M, Kasivisvanathan V. The role of the multiparametric MRI in the diagnosis of prostate cancer in biopsy-naïve men. Curr Opin Urol 2017;27:488-494.

12. Baco E, Rud E, Eri LM, et al. A randomized controlled trial to assess and compare the outcomes of two-core prostate biopsy guided by fused magnetic resonance and transrectal ultrasound images and traditional 12-core systematic biopsy. Eur Urol 2016;69:149-156.

13. Siddiqui MM, Rais-Bahrami S, Turkbey B, et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 2015;313:390-397.

14. Porpiglia F, Manfredi M, Mele F, et al. Diagnostic pathway with multiparametric magnetic resonance imaging versus standard pathway: results from a randomized prospective study in biopsy-naïve patients with suspected prostate cancer. Eur Urol 2017;72:282-288.

15. Schoots IG, Roobol MJ, Nieboer D, Bangma CH, Steyerberg EW, Hunink MG. Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol 2015;68:438-450.

16. Kasivisvanathan V, Jichi F, Klotz L, et al. A multicentre randomised controlled trial assessing whether MRI-targeted biopsy is non-inferior to standard transrectal ultrasound guided biopsy for the diagnosis of clinically significant prostate cancer in men without prior biopsy: a study protocol. BMJ Open 2017;7(10):e017863-e017863.

17. Haffner J, Lemaitre L, Puech P, et al. Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Int 2011;108(8 Pt 2):E171-E178.

18. Rosario DJ, Lane JA, Metcalfe C, et al. Short term outcomes of prostate biopsy in men tested for cancer by prostate specific antigen: prospective evaluation within ProtecT study. BMJ 2012;344:d7894-d7894.

19. Herdman M, Gudex C, Lloyd A, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res 2011;20:1727-1736.

20. Feng Y, Devlin NJ, Shah KK, Mulhern B, van Hout B. New methods for modelling EQ-5D-5L value sets: an application to English data. Health Econ 2018;27:23-38.

21. Janssen MF, Pickard AS, Golicki D, et al. Measurement properties of the EQ-5D-5L compared to the EQ-5D-3L across eight patient groups: a multi-country study. Qual Life Res 2013;22:1717-1727.

22. Tonttila PP, Lantto J, Pääkkö E, et al. Prebiopsy multiparametric magnetic resonance imaging for prostate cancer diagnosis in biopsy-naive men with suspected prostate cancer based on elevated prostate-specific antigen values: results from a randomized prospective blinded controlled trial. Eur Urol 2016;69:419-425.

23. Panebianco V, Barchetti F, Sciarra A, et al. Multiparametric magnetic resonance imaging vs. standard care in men being evaluated for prostate cancer: a randomized study. Urol Oncol 2015;33(1):17.e1-17.e7.

24. Loudon K, Treweek S, Sullivan F, Donnan P, Thorpe KE, Zwarenstein M. The PRECIS-2 tool: designing trials that are fit for purpose. BMJ 2015;350:h2147-h2147.

25. Wegelin O, van Melick HHE, Hooft L, et al. Comparing three different techniques for magnetic resonance imaging-targeted prostate biopsies: a systematic review of in-bore versus magnetic resonance imaging-transrectal ultrasound fusion versus cognitive registration — is there a preferred technique? Eur Urol 2017;71:517-531.

26. Rosenkrantz AB, Ginocchio LA, Cornfeld D, et al. Interobserver reproducibility of the PI-RADS version 2 lexicon: a multicenter study of six experienced prostate radiologists. Radiology 2016;280:793-804.

27. Brimo F, Schultz L, Epstein JI. The value of mandatory second opinion pathology review of prostate needle biopsy interpretation before radical prostatectomy. J Urol 2010;184:126-130.

28. Wysock JS, Rosenkrantz AB, Huang WC, et al. A prospective, blinded comparison of magnetic resonance (MR) imaging-ultrasound fusion and visual estimation in the performance of MR-targeted prostate biopsy: the PROFUS Trial. Eur Urol 201466:343-351.

29. Faria R, Soares MO, Spackman E, et al. Optimising the diagnosis of prostate cancer in the era of multiparametric magnetic resonance imaging: a cost-effectiveness analysis based on the Prostate MR Imaging Study (PROMIS). Eur Urol 2018;73:23-30.

30. de Rooij M, Crienen S, Witjes JA, Barentsz JO, Rovers MM, Grutters JP. Cost-effectiveness of magnetic resonance (MR) imaging and MR-guided targeted biopsy versus systematic transrectal ultrasound-guided biopsy in diagnosing prostate cancer: a modelling study from a health care perspective. Eur Urol 2014;66:430-436.

31. Cerantola Y, Dragomir A, Tanguay S, Bladou F, Aprikian A, Kassouf W. Cost-effectiveness of multiparametric magnetic resonance imaging and targeted biopsy in diagnosing prostate cancer. Urol Oncol 2016;34(3):119.e1-119.e9.

服务条款 | 隐私政策 | 联系我们