提示: 手机请竖屏浏览!

对智能手表的心房颤动识别能力所做的大规模评估
Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation


Marco V. Perez ... 心脑血管疾病 • 2019.11.14
相关阅读
• 应用可穿戴技术追踪流感 • 应用APP检测心房颤动的时代即将到来,但评估仍在进行中 • 智能手表能否探测到心房颤动

智能腕表优化隐匿性房颤的诊断策略

 

胡荣†,李昊‡,郑华光§*

†首都医科大学附属北京安贞医院心内科,健康管理中心;‡国家神经系统疾病临床研究中心大数据及人工智能中心;§首都医科大学附属北京天坛医院神经病学中心健康管理中心

*通讯作者

 

心房颤动(房颤)是最常见的心律失常,全球约有3,000万患者。在人群的患病率约为1%~3.2%。随着年龄的增长,房颤的发病风险迅速增加。房颤的患病率,从年龄<50岁人群的1%,增加到80岁以上人群的10%~20% 1

查看更多

摘要


背景

可穿戴设备的光学传感器可检出不规则脉搏。智能手表应用程序(app)在常规使用期间的心房颤动识别能力尚未明确。

 

方法

未患心房颤动(根据参与者自己的报告)的参与者通过智能手机(苹果手机)app同意接受监测。如果智能手表的不规则脉搏通知算法识别出可能的心房颤动,则启动远程医疗访视,并向参与者邮寄心电图(ECG)监测贴,由参与者佩戴长达7天。我们在手表发出不规则脉搏通知后90日和研究结束时对参与者进行了问卷调查。主要目的是以0.10的置信区间宽度目标估算在收到通知的参与者中,ECG监测贴显示心房颤动的比例,以及不规则脉搏间期的阳性预测值。

 

结果

我们在8个月期间招募了419,297名参与者。在中位117天监测期间,2,161名参与者(0.52%)收到了不规则脉搏通知。450名参与者寄回了包含可分析数据的ECG监测贴(开始佩戴监测贴的平均时间为收到通知后13天),心房颤动的总发生率为34%(97.5%置信区间[CI],29%~39%),65岁或以上参与者的发生率为35%(97.5% CI,27%~43%)。在收到不规则脉搏通知的参与者中,如果通过ECG同时观察到心房颤动来确认患者发生心房颤动,则后续不规则脉搏通知的阳性预测值为0.84(95% CI,0.76~0.92),后续不规则血流速度图的阳性预测值为0.71(97.5% CI,0.69~0.74)。在收到通知的参与者中,有1,376名返回90天问卷调查,其中57%联络了本研究以外的医务人员。据报告,研究中未发生与app相关的严重不良事件。

 

结论

参与者收到不规则脉搏通知的概率低。在收到不规则脉搏通知的参与者中,34%在后续ECG监测贴的图中出现心房颤动,84%的不规则脉搏通知与心房颤动一致。这是一项不设研究中心(参与者无须到研究中心接受访视)的实效性研究,其设计为通过用户设备可靠评估结局或依从性的大规模实效性研究奠定了基础(由苹果公司资助;苹果心脏研究[Apple Heart Study]在ClinicalTrials.gov注册号为NCT03335800)。





作者信息

Marco V. Perez, M.D., Kenneth W. Mahaffey, M.D., Haley Hedlin, Ph.D., John S. Rumsfeld, M.D., Ph.D., Ariadna Garcia, M.S., Todd Ferris, M.D., Vidhya Balasubramanian, M.S., Andrea M. Russo, M.D., Amol Rajmane, M.D., Lauren Cheung, M.D., Grace Hung, M.S., Justin Lee, M.P.H., Peter Kowey, M.D., Nisha Talati, M.B.A., Divya Nag, Santosh E. Gummidipundi, M.S., Alexis Beatty, M.D., M.A.S., Mellanie True Hills, B.S., Sumbul Desai, M.D., Christopher B. Granger, M.D., Manisha Desai, Ph.D., and Mintu P. Turakhia, M.D., M.A.S. for the Apple Heart Study Investigators*
From the Division of Cardiovascular Medicine (M.V.P.), Stanford Center for Clinical Research (K.W.M., A.R., N.T.), the Quantitative Sciences Unit (H.H., A.G., V.B., J.L., S.E.G., M.D.), Information Resources and Technology (T.F., G.H.), Department of Medicine (S.D.), and the Center for Digital Health (M.P.T.), Stanford University, Stanford, Apple, Cupertino (L.C., D.N., A.B., S.D.), and the Veterans Affairs Palo Alto Health Care System, Palo Alto (M.P.T.) — all in California; the University of Colorado School of Medicine, Aurora (J.S.R.); the Division of Cardiovascular Disease, Cooper Medical School of Rowan University, Camden, NJ (A.M.R.); the Lankenau Heart Institute and Jefferson Medical College, Philadelphia (P.K.); StopAfib.org, American Foundation for Women’s Health, Decatur, TX (M.T.H.); and the Duke Clinical Research Institute, Duke University, Durham, NC (C.B.G.). Address reprint requests to Dr. Perez or Dr. Turakhia at Stanford Center for Clinical Research, 1070 Arastradero Rd., Palo Alto, CA 94304, or at mvperez@stanford.edu or mintu@stanford.edu. *A complete list of the Apple Heart Study Investigators is provided in the Supplementary Appendix, available at NEJM.org.

 

参考文献

1. Strain T, Wijndaele K, Brage S. Physical activity surveillance through smartphone apps and wearable trackers: examining the UK potential for nationally representative sampling. JMIR Mhealth Uhealth 2019;7(1):e11898-e11898.

2. Tison GH, Sanchez JM, Ballinger B, et al. Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiol 2018;3:409-416.

3. Apple. Using Apple Watch for arrhythmia detection. December 2018 (https://www.apple.com/healthcare/site/docs/Apple_Watch_Arrhythmia_Detection.pdf. opens in new tab).

4. Colilla S, Crow A, Petkun W, Singer DE, Simon T, Liu X. Estimates of current and future incidence and prevalence of atrial fibrillation in the U.S. adult population. Am J Cardiol 2013;112:1142-1147.

5. Weng LC, Preis SR, Hulme OL, et al. Genetic predisposition, clinical risk factor burden, and lifetime risk of atrial fibrillation. Circulation 2018;137:1027-1038.

6. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 1991;22:983-988.

7. Sanna T, Diener H-C, Passman RS, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med 2014;370:2478-2486.

8. Turakhia MP, Shafrin J, Bognar K, et al. Estimated prevalence of undiagnosed atrial fibrillation in the United States. PLoS One 2018;13(4):e0195088-e0195088.

9. Healey JS, Connolly SJ, Gold MR, et al. Subclinical atrial fibrillation and the risk of stroke. N Engl J Med 2012;366:120-129.

10. Belkin MN, Soria CE, Waldo AL, et al. Incidence and clinical significance of new-onset device-detected atrial tachyarrhythmia: a meta-analysis. Circ Arrhythm Electrophysiol 2018;11(3):e005393-e005393.

11. Steinhubl SR, Waalen J, Edwards AM, et al. Effect of a home-based wearable continuous ECG monitoring patch on detection of undiagnosed atrial fibrillation: the mSToPS randomized clinical trial. JAMA 2018;320:146-155.

12. Halcox JPJ, Wareham K. Response by Halcox and Wareham to letter regarding article, “Assessment of remote heart rhythm sampling using the AliveCor heart monitor to screen for atrial fibrillation: the REHEARSE-AF study.” Circulation 2018;137:2193-2194.

13. Turakhia MP, Desai M, Hedlin H, et al. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: the Apple Heart Study. Am Heart J 2019;207:66-75.

服务条款 | 隐私政策 | 联系我们