提示: 手机请竖屏浏览!

乳腺组织极致密女性的MRI补充筛查
Supplemental MRI Screening for Women with Extremely Dense Breast Tissue


Marije F. Bakker ... 肿瘤 • 2019.11.28
NEJM 动画解读

致密乳腺的MRI筛查
相关阅读
• 断层合成成像在乳房密度高的女性中有多大价值? • 补充性乳腺磁共振成像检查和乳房X线筛查的风险及益处比较

致密型乳腺筛查的窘境

 

卢晓玲,陈鹏*

上海嘉会国际医院影像科

*通讯作者

 

致密型乳腺很常见。在美国,40~74岁的女性中有40%~50%的人有高密度的乳房[1,2]。乳腺密度高的妇女患乳腺癌的可能性是乳腺密度低的妇女的4~5倍[3,4]。乳房密度越大,在乳腺X线图像中发现肿瘤就越困难。目前,对于致密型乳腺的女性并没有特别的筛查建议或指南,然而医师可能会建议女性做其他类型的辅助乳腺影像检查。

查看更多

摘要


背景

极致密乳腺组织是乳腺癌的危险因素,并限制了乳腺X线检查对乳腺癌的检测能力。关于磁共振成像(MRI)补充检查可否提高此类患者的早期检出率和降低其间期乳腺癌(interval breast cancer)发生率,我们需要相关数据。

 

方法

在荷兰的这项多中心、随机、对照试验中,我们将40,373名乳腺X线筛查结果正常且乳腺组织极致密的50~75岁女性分组,分别被邀请接受MRI补充检查,或者仅接受乳腺X线筛查。我们以1∶4的比例分组,8,061名女性被分配至MRI邀请组,32,312名女性被分配至单独乳腺X线检查组。主要结局是在2年筛查期间,间期癌发生率的组间差异。

 

结果

在MRI邀请组和单独乳腺X线检查组中,间期癌发生率分别为2.5例/1,000例筛查和5.0例/1,000例筛查,差异为2.5例/1,000例筛查(95% CI,1.0~3.7;P<0.001)。在被邀请接受MRI检查的女性中,有59%接受了邀请。MRI邀请组有20例患者被诊断出间期癌,其中4例发生于实际接受了MRI检查的女性(0.8例/1,000例筛查),16例发生于未接受邀请的女性(4.9例/1,000例筛查)。在实际接受了MRI筛查的女性中,MRI的癌症检出率为16.5例/1,000例筛查(95% CI,13.3~20.5)。召回进行进一步检查和活检的阳性预测值分别为17.4%(95% CI,14.2~21.2)和26.3%(95% CI,21.7~31.6)。假阳性率为79.8例/1,000例筛查。在接受MRI检查的女性中,0.1%在筛查期间或之后立即报告了不良事件或严重不良事件。

 

结论

在2年筛查期间,在乳腺X线检查结果正常的乳腺组织极致密女性中,与单独使用乳腺X线检查相比,MRI补充筛查显著减少了诊断出的间期癌(由荷兰乌得勒支大学医学中心[University Medical Center Utrecht]等资助;DENSE在ClinicalTrials.gov注册号为NCT01315015)。





作者信息

Marije F. Bakker, Ph.D., Stéphanie V. de Lange, M.D., Ruud M. Pijnappel, M.D., Ph.D., Ritse M. Mann, M.D., Ph.D., Petra H.M. Peeters, M.D., Ph.D., Evelyn M. Monninkhof, Ph.D., Marleen J. Emaus, Ph.D., Claudette E. Loo, M.D., Ph.D., Robertus H.C. Bisschops, M.D., Ph.D., Marc B.I. Lobbes, M.D., Ph.D., Matthijn D.F. de Jong, M.D., Katya M. Duvivier, M.D., Jeroen Veltman, M.D., Ph.D., Nico Karssemeijer, Ph.D., Harry J. de Koning, M.D., Ph.D., Paul J. van Diest, M.D., Ph.D., Willem P.T.M. Mali, M.D., Ph.D., Maurice A.A.J. van den Bosch, M.D., Ph.D., Wouter B. Veldhuis, M.D., Ph.D., and Carla H. van Gils, Ph.D. for the DENSE Trial Study Group*
From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, ’s-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) — all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.). Address reprint requests to Dr. van Gils at the Julius Center for Health Sciences and Primary Care, Stratenum 6.131, University Medical Center Utrecht, P.O. Box 85500, Utrecht 3508 GA, the Netherlands, or at c.vangils@umcutrecht.nl. *A list of members of the DENSE Trial Study Group is provided in the Supplementary Appendix, available at NEJM.org.

 

参考文献

1. Boyd NF, Guo H, Martin LJ, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med 2007;356:227-236.

2. Mandelson MT, Oestreicher N, Porter PL, et al. Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst 2000;92:1081-1087.

3. Wanders JO, Holland K, Veldhuis WB, et al. Volumetric breast density affects performance of digital screening mammography. Breast Cancer Res Treat 2017;162:95-103.

4. DenseBreast-info. Is there a national reporting standard? March 28, 2019 (https://densebreast-info.org/is-there-a-federal-law.aspx. opens in new tab).

5. Siu AL. Screening for breast cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2016;164:279-296.

6. Melnikow J, Fenton JJ, Whitlock EP, et al. Supplemental screening for breast cancer in women with dense breasts: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med 2016;164:268-278.

7. Irwig L, Houssami N, Armstrong B, Glasziou P. Evaluating new screening tests for breast cancer. BMJ 2006;332:678-679.

8. Lord SJ, Irwig L, Simes RJ. When is measuring sensitivity and specificity sufficient to evaluate a diagnostic test, and when do we need randomized trials? Ann Intern Med 2006;144:850-855.

9. Emaus MJ, Bakker MF, Peeters PH, et al. MR imaging as an additional screening modality for the detection of breast cancer in women aged 50-75 years with extremely dense breasts: the DENSE trial study design. Radiology 2015;277:527-537.

10. National evaluation of breast cancer screening in the Netherlands. Rotterdam, the Netherlands: National Institute for Public Health and the Environment, 2014.

11. Timmers JM, den Heeten GJ, Adang EM, Otten JD, Verbeek AL, Broeders MJ. Dutch digital breast cancer screening: implications for breast cancer care. Eur J Public Health 2012;22:925-929.

12. van Engeland S, Snoeren PR, Huisman H, Boetes C, Karssemeijer N. Volumetric breast density estimation from full-field digital mammograms. IEEE Trans Med Imaging 2006;25:273-282.

13. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA. ACR BI-RADS atlas: breast imaging reporting and data system. 5th ed. Reston, VA: American College of Radiology, 2013.

14. Zelen M. A new design for randomized clinical trials. N Engl J Med 1979;300:1242-1245.

15. Kerncijfers wijken en buurten. Statistics Netherlands, 2014 (http://statline.cbs.nl/Statweb/. opens in new tab).

16. de Lange SV, Bakker MF, Monninkhof EM, et al. Reasons for (non)participation in supplemental population-based MRI breast screening for women with extremely dense breasts. Clin Radiol 2018;73(8):759.e1-759.e9.

17. D’Orsi CJ, Mendelson EB, Ikeda DM. Breast Imaging Reporting and Data System: ACR BI-RADS breast imaging atlas. Reston, VA: American College of Radiology, 2003.

18. Ikeda DM, Hylton NM, Kuhl CK. BI-RADS: magnetic resonance imaging. Reston, VA: American College of Radiology, 2003.

19. Cuzick J, Edwards R, Segnan N. Adjusting for non-compliance and contamination in randomized clinical trials. Stat Med 1997;16:1017-1029.

20. Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables. J Am Stat Assoc 1996;91:444-455.

21. Dunn G, Maracy M, Tomenson B. Estimating treatment effects from randomized clinical trials with noncompliance and loss to follow-up: the role of instrumental variable methods. Stat Methods Med Res 2005;14:369-395.

22. Stuart EA, Perry DF, Le HN, Ialongo NS. Estimating intervention effects of prevention programs: accounting for noncompliance. Prev Sci 2008;9:288-298.

23. Foca F, Mancini S, Bucchi L, et al. Decreasing incidence of late-stage breast cancer after the introduction of organized mammography screening in Italy. Cancer 2013;119:2022-2028.

24. Tabár L, Yen AM, Wu WY, et al. Insights from the breast cancer screening trials: how screening affects the natural history of breast cancer and implications for evaluating service screening programs. Breast J 2015;21:13-20.

25. Ohuchi N, Suzuki A, Sobue T, et al. Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): a randomised controlled trial. Lancet 2016;387:341-348.

26. Berg WA, Zhang Z, Lehrer D, et al. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA 2012;307:1394-1404.

27. Chen SQ, Huang M, Shen YY, Liu CL, Xu CX. Application of abbreviated protocol of magnetic resonance imaging for breast cancer screening in dense breast tissue. Acad Radiol 2017;24:316-320.

28. Kuhl CK, Strobel K, Bieling H, et al. Supplemental breast MR imaging screening of women with average risk of breast cancer. Radiology 2017;283:361-370.

29. Habbema JD, van Oortmarssen GJ, Lubbe JT, van der Maas PJ. The MISCAN simulation program for the evaluation of screening for disease. Comput Methods Programs Biomed 1985;20:79-93.

30. Mandelblatt JS, Stout NK, Schechter CB, et al. Collaborative modeling of the benefits and harms associated with different U.S. breast cancer screening strategies. Ann Intern Med 2016;164:215-225.

31. Sankatsing VD, Heijnsdijk EA, van Luijt PA, van Ravesteyn NT, Fracheboud J, de Koning HJ. Cost-effectiveness of digital mammography screening before the age of 50 in the Netherlands. Int J Cancer 2015;137:1990-1999.

服务条款 | 隐私政策 | 联系我们