提示: 手机请竖屏浏览!

阿司匹林与肝细胞癌和肝脏相关死亡的关联
Association of Aspirin with Hepatocellular Carcinoma and Liver-Related Mortality


Tracey G. Simon ... 肿瘤 • 2020.03.12
相关阅读
• 乙肝病毒慢性感染者服用阿司匹林是否具有肝细胞癌防护作用 • 肝细胞癌

摘要


背景

在乙型肝炎病毒或丙型肝炎病毒慢性感染者中,我们需要进一步了解小剂量阿司匹林(<160 mg)对新发肝细胞癌、肝脏相关死亡和胃肠道出血的长期影响。

 

方法

在瑞典全国性登记系统中,我们确定了在2005—2015年被诊断为慢性乙型肝炎或丙型肝炎,且无阿司匹林用药史的所有成人患者(50,275例患者)。此外,我们通过曾取药的首张阿司匹林处方(连续≥90剂)确定了开始服用小剂量阿司匹林的患者(14,205例患者)。我们设计了一项倾向评分,并采用逆处理概率加权法平衡两组的基线特征。在考虑竞争性事件的情况下,我们应用Cox比例风险回归模型估计了肝细胞癌和肝脏相关死亡的风险。

 

结果

中位随访7.9年时,在阿司匹林用药者和非用药者中,肝细胞癌的估计累积发生率分别为4.0%和8.3%(差异,-4.3个百分点;95%置信区间[CI],-5.0~-3.6;校正风险比,0.69;95% CI,0.62~0.76)。这一负关联似乎取决于用药持续时间;与短期(3个月~<1年)用药相比,用药1~<3年、用药3~<5年和用药≥5年时,校正风险比分别为0.90(95% CI,0.76~1.06)、0.66(95% CI,0.56~0.78)和0.57(95% CI,0.42~0.70)。在阿司匹林用药者和非用药者中,10年肝脏相关死亡率分别为11.0%和17.9%(差异,-6.9个百分点[95% CI,-8.1~-5.7];校正风险比,0.73 [95% CI,0.67~0.81])。而阿司匹林用药者和非用药者的10年胃肠道出血风险无显著差异(分别为7.8%和6.9%;差异,0.9个百分点;95% CI,-0.6~2.4)。

 

结论

在一项对瑞典慢性病毒性肝炎患者进行的全国性研究中,与不使用阿司匹林相比,使用小剂量阿司匹林与显著较低的肝细胞癌风险和较低的肝脏相关死亡率相关,同时并没有显著较高的胃肠道出血风险(由美国国立卫生研究院等资助)。





作者信息

Tracey G. Simon, M.D., M.P.H., Ann-Sofi Duberg, M.D., Ph.D., Soo Aleman, M.D., Ph.D., Raymond T. Chung, M.D., Andrew T. Chan, M.D., M.P.H., and Jonas F. Ludvigsson, M.D., Ph.D.
From the Division of Gastroenterology and Hepatology (T.G.S., R.T.C., A.T.C.) and the Clinical and Translational Epidemiology Unit (T.G.S., A.T.C.), Department of Medicine, Massachusetts General Hospital, Harvard Medical School (T.G.S., R.T.C., A.T.C.), Broad Institute (R.T.C., A.T.C.), and the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health (A.T.C.) — all in Boston; the Department of Infectious Diseases, School of Medical Sciences, Faculty of Medicine and Health (A.-S.D.), and the Department of Pediatrics (J.F.L.), Örebro University Hospital, Örebro, and the Department of Infectious Diseases, Karolinska University Hospital (S.A.), the Department of Medicine Huddinge (S.A.), and the Department of Medical Epidemiology and Biostatistics (J.F.L.), Karolinska Institutet, Stockholm — all in Sweden; and the Department of Medicine, Columbia University College of Physicians and Surgeons, New York (J.F.L.). Address reprint requests to Dr. Ludvigsson at the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, P.O. Box 281, SE-17177 Stockholm, Sweden, or at jonasludvigsson@yahoo.com.

 

参考文献

1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359-E386.

2. El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012;142(6):1264.e1-1273.e1.

3. Ryerson AB, Eheman CR, Altekruse SF, et al. Annual report to the nation on the status of cancer, 1975-2012, featuring the increasing incidence of liver cancer. Cancer 2016;122:1312-1337.

4. Chen H, Cai W, Chu ESH, et al. Hepatic cyclooxygenase-2 overexpression induced spontaneous hepatocellular carcinoma formation in mice. Oncogene 2017;36:4415-4426.

5. Kern MA, Schubert D, Sahi D, et al. Proapoptotic and antiproliferative potential of selective cyclooxygenase-2 inhibitors in human liver tumor cells. Hepatology 2002;36:885-894.

6. Foderà D, D’Alessandro N, Cusimano A, et al. Induction of apoptosis and inhibition of cell growth in human hepatocellular carcinoma cells by COX-2 inhibitors. Ann N Y Acad Sci 2004;1028:440-449.

7. Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells. Oncogenesis 2016;5:e189-e189.

8. Malehmir M, Pfister D, Gallage S, et al. Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat Med 2019;25:641-655.

9. Petrick JL, Sahasrabuddhe VV, Chan AT, et al. NSAID use and risk of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: the Liver Cancer Pooling Project. Cancer Prev Res (Phila) 2015;8:1156-1162.

10. Sahasrabuddhe VV, Gunja MZ, Graubard BI, et al. Nonsteroidal anti-inflammatory drug use, chronic liver disease, and hepatocellular carcinoma. J Natl Cancer Inst 2012;104:1808-1814.

11. Simon TG, Ma Y, Ludvigsson JF, et al. Association between aspirin use and risk of hepatocellular carcinoma. JAMA Oncol 2018;4:1683-1690.

12. Lee TY, Hsu YC, Tseng HC, et al. Association of daily aspirin therapy with risk of hepatocellular carcinoma in patients with chronic hepatitis B. JAMA Intern Med 2019;179:633-640.

13. Duberg AS, Törner A, Davidsdóttir L, et al. Cause of death in individuals with chronic HBV and/or HCV infection, a nationwide community-based register study. J Viral Hepat 2008;15:538-550.

14. Ludvigsson JF, Andersson E, Ekbom A, et al. External review and validation of the Swedish National Inpatient Register. BMC Public Health 2011;11:450-450.

15. Ray WA. Evaluating medication effects outside of clinical trials: new-user designs. Am J Epidemiol 2003;158:915-920.

16. Mohanty A, Tate JP, Garcia-Tsao G. Statins are associated with a decreased risk of decompensation and death in veterans with hepatitis C-related compensated cirrhosis. Gastroenterology 2016;150(2):430.e1-440.e1.

17. Simon TG, Bonilla H, Yan P, Chung RT, Butt AA. Atorvastatin and fluvastatin are associated with dose-dependent reductions in cirrhosis and hepatocellular carcinoma, among patients with hepatitis C virus: results from ERCHIVES. Hepatology 2016;64:47-57.

18. Wettermark B, Hammar N, Fored CM, et al. The new Swedish Prescribed Drug Register — opportunities for pharmacoepidemiological research and experience from the first six months. Pharmacoepidemiol Drug Saf 2007;16:726-735.

19. Jonsson F, Yin L, Lundholm C, Smedby KE, Czene K, Pawitan Y. Low-dose aspirin use and cancer characteristics: a population-based cohort study. Br J Cancer 2013;109:1921-1925.

20. Tsan YT, Lee CH, Wang JD, Chen PC. Statins and the risk of hepatocellular carcinoma in patients with hepatitis B virus infection. J Clin Oncol 2012;30:623-630.

21. Sundström J, Hedberg J, Thuresson M, Aarskog P, Johannesen KM, Oldgren J. Low-dose aspirin discontinuation and risk of cardiovascular events: a Swedish nationwide, population-based cohort study. Circulation 2017;136:1183-1192.

22. Osterberg L, Blaschke T. Adherence to medication. N Engl J Med 2005;353:487-497.

23. Barlow L, Westergren K, Holmberg L, Talbäck M. The completeness of the Swedish Cancer Register: a sample survey for year 1998. Acta Oncol 2009;48:27-33.

24. Törner A, Stokkeland K, Svensson Å, et al. The underreporting of hepatocellular carcinoma to the cancer register and a log-linear model to estimate a more correct incidence. Hepatology 2017;65:885-892.

25. Austin PC. The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies. Stat Med 2010;29:2137-2148.

26. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 1999;94:496-509.

27. Funk MJ, Westreich D, Wiesen C, Stürmer T, Brookhart MA, Davidian M. Doubly robust estimation of causal effects. Am J Epidemiol 2011;173:761-767.

28. Chan AT, Giovannucci EL, Meyerhardt JA, Schernhammer ES, Wu K, Fuchs CS. Aspirin dose and duration of use and risk of colorectal cancer in men. Gastroenterology 2008;134:21-28.

29. Parsons LS. Reducing bias in a propensity score matched-pair sample using greedy matching techniques. Paper 214-26. In: Proceedings of the Twenty-Sixth Annual SAS Users Group International Conference, Long Beach, CA, April 22–25, 2001. abstract (www2.sas.com/proceedings/sugi26/p214-26.pdf. opens in new tab).

30. Hagström H, Nasr P, Ekstedt M, et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J Hepatol 2017;67:1265-1273.

31. Schneeweiss S. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics. Pharmacoepidemiol Drug Saf 2006;15:291-303.

32. Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med 2015;34:3661-3679.

33. Lee M, Chung GE, Lee JH, et al. Antiplatelet therapy and the risk of hepatocellular carcinoma in chronic hepatitis B patients on antiviral treatment. Hepatology 2017;66:1556-1569.

34. Hwang IC, Chang J, Kim K, Park SM. Aspirin use and risk of hepatocellular carcinoma in a national cohort study of Korean adults. Sci Rep 2018;8:4968-4968.

35. Paik YH, Kim JK, Lee JI, et al. Celecoxib induces hepatic stellate cell apoptosis through inhibition of Akt activation and suppresses hepatic fibrosis in rats. Gut 2009;58:1517-1527.

36. Chan TA, Morin PJ, Vogelstein B, Kinzler KW. Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosis. Proc Natl Acad Sci U S A 1998;95:681-686.

37. Leng J, Han C, Demetris AJ, Michalopoulos GK, Wu T. Cyclooxygenase-2 promotes hepatocellular carcinoma cell growth through Akt activation: evidence for Akt inhibition in celecoxib-induced apoptosis. Hepatology 2003;38:756-768.

38. Yamamoto H, Kondo M, Nakamori S, et al. JTE-522, a cyclooxygenase-2 inhibitor, is an effective chemopreventive agent against rat experimental liver fibrosis. Gastroenterology 2003;125:556-571.

39. Gao JH, Wen SL, Yang WJ, et al. Celecoxib ameliorates portal hypertension of the cirrhotic rats through the dual inhibitory effects on the intrahepatic fibrosis and angiogenesis. PLoS One 2013;8(7):e69309-e69309.

40. Gilligan MM, Gartung A, Sulciner ML, et al. Aspirin-triggered proresolving mediators stimulate resolution in cancer. Proc Natl Acad Sci U S A 2019;116:6292-6297.

服务条款 | 隐私政策 | 联系我们