提示: 手机请竖屏浏览!

人工智能从眼底照片中检测视乳头水肿
Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs


Dan Milea ... 其他 • 2020.04.30

超能力AI——视乳头水肿的精确诊断

 

宋雪霏,李琳*

上海交通大学医学院附属第九人民医院眼科

*通讯作者

 

4月15日,《新英格兰医学杂志》(NEJM)在线发表《人工智能从眼底照片中检测视神经乳头水肿》 1。研究者使用了来自全球11个国家、19家临床机构的由不同相机采集的14,341例散瞳后眼底图片,对其深度学习训练,得到了一个人工智能模型。

查看更多

背景

眼科以外其他科的医师并不能很有把握地实施直接眼底镜(检眼镜)检查。目前尚未充分研究利用人工智能从眼底照片中检测视乳头水肿和其他视盘异常。

 

方法

我们对一个深度学习系统进行了训练、验证和外部测试,该系统将15,846张回顾性收集的眼底照片中的视盘分类为正常或者有视乳头水肿或其他异常,这些照片来自多个族群,是散瞳药散瞳后采用各种数码相机拍摄的。在这些照片中,来自11个国家19个研究中心的14,341张照片被用于训练和验证系统,来自另外5个研究中心的1,505张照片被用于外部测试。我们通过计算接受者操作特征曲线(AUC)下面积、灵敏度和特异性,并与神经眼科医师的临床诊断参考标准进行比较的方式评估了该系统在分类视盘方面的性能。

 

结果

来自6,779例患者的训练和验证数据集包括14,341张照片:9,156张的视盘正常,2,148张有视乳头水肿,3,037张的视盘有其他异常。各研究中心的照片被分类为正常的百分比从9.8%至100%不等;被分类为视乳头水肿的百分比从0至59.5%不等。在验证数据集中,该系统能够以0.99(95%置信区间[CI],0.98~0.99)的AUC区分有视乳头水肿的视盘与正常和有其他异常的视盘,并能够以0.99(95% CI,0.99~0.99)的AUC区分正常视盘与异常视盘。在包含1,505张照片的外部测试数据集中,该系统检测视乳头水肿的AUC为0.96(95% CI,0.95~0.97),灵敏度为96.4%(95% CI,93.9~98.3),特异性为84.7%(95% CI,82.3~87.1)。

 

结论

深度学习系统可在散瞳后拍摄的眼底照片中区分出有视乳头水肿的视盘、正常视盘和有其他异常的视盘(由新加坡国家医学研究委员会[Singapore National Medical Research Council]和SingHealth杜克-新加坡国立大学眼科和视觉科学学术临床项目[SingHealth Duke-NUS Ophthalmology and Visual Sciences Academic Clinical Program]资助)。





作者信息

Dan Milea, M.D., Ph.D., Raymond P. Najjar, Ph.D., Jiang Zhubo, M.Sc., Daniel Ting, M.D., Ph.D., Caroline Vasseneix, M.D., Xinxing Xu, Ph.D., Masoud Aghsaei Fard, M.D., Pedro Fonseca, M.D., Kavin Vanikieti, M.D., Wolf A. Lagrèze, M.D., Chiara La Morgia, M.D., Ph.D., Carol Y. Cheung, Ph.D., Steffen Hamann, M.D., Ph.D., Christophe Chiquet, M.D., Ph.D., Nicolae Sanda, M.D., Ph.D., Hui Yang, M.D., Ph.D., Luis J. Mejico, M.D., Marie-Bénédicte Rougier, M.D., Richard Kho, M.D., Tran Thi Ha Chau, M.D., Shweta Singhal, M.B., B.S., Ph.D., Philippe Gohier, M.D., Catherine Clermont-Vignal, M.D., Ching-Yu Cheng, M.D., Ph.D., M.P.H., Jost B. Jonas, M.D., Patrick Yu-Wai-Man, M.B., B.S., Ph.D., Clare L. Fraser, M.B., B.S., M.Med., John J. Chen, M.D., Ph.D., Selvakumar Ambika, D.O., D.N.B., Neil R. Miller, M.D., Yong Liu, Ph.D., Nancy J. Newman, M.D., Tien Y. Wong, M.D., Ph.D., and Valérie Biousse, M.D. for the BONSAI Group*
From the Singapore National Eye Center (D.M., D.T., S.S., C.-Y.C., T.Y.W.), Singapore Eye Research Institute (D.M., R.P.N., D.T., C.V., S.S., C.-Y.C., T.Y.W.), Duke–NUS Medical School (D.M., R.P.N., D.T., S.S., C.-Y.C., T.Y.W.), Institute of High Performance Computing, Agency for Science, Technology, and Research (J.Z., X.X., Y.L.), and Yong Loo Lin School of Medicine, National University of Singapore (S.S., T.Y.W.) — all in Singapore; Farabi Eye Hospital, Tehran University of Medical Science, Tehran, Iran (M.A.F.); the Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra, and the Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal (P.F.); the Department of Ophthalmology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (K.V.); the Eye Center, Medical Center, University of Freiburg, Freiburg (W.A.L.), and the Department of Ophthalmology, Ruprecht Karl University of Heidelberg, Mannheim (J.B.J.) — both in Germany; IRCCS Istituto delle Scienze Neurologiche di Bologna, Unità Operativa Complessa Clinica Neurologica, and Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy (C.L.M.); the Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong (C.Y.C.), and Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou (H.Y.) — both in China; the Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Glostrup, Denmark (S.H.); the Department of Ophthalmology, University Hospital of Grenoble-Alpes, and Grenoble-Alpes University, HP2 Laboratory, INSERM Unité 1042, Grenoble (C.C.), Service d’Ophtalmologie, Unité Rétine–Uvéites–Neuro-Ophtalmologie, Hôpital Pellegrin, Centre Hospitalier Universitaire de Bordeaux, Bordeaux (M.-B.R.), the Department of Ophthalmology, Lille Catholic Hospital, Lille Catholic University, and INSERM Unité 1171, Lille (T.T.H.C.), the Department of Ophthalmology, University Hospital Angers, Angers (P.G.), and Rothschild Foundation Hospital, Paris (C.C.-V.) — all in France; the Department of Clinical Neurosciences, Geneva University Hospital, Geneva (N.S.); the Department of Neurology, SUNY Upstate Medical University, Syracuse, NY (L.J.M.); the American Eye Center, Mandaluyong City, Philippines (R.K.); Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, University College London, London (P.Y.-W.-M.), and Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, and Cambridge Centre for Brain Repair and Medical Research Council Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge (P.Y.-W.-M.) — all in the United Kingdom; the Save Sight Institute, Faculty of Health and Medicine, University of Sydney, Sydney (C.L.F.); the Department of Ophthalmology and Neurology, Mayo Clinic, Rochester, MN (J.J.C.); the Department of Neuro-ophthalmology, Sankara Nethralaya, Medical Research Foundation, Chennai, India (S.A.); the Departments of Ophthalmology, Neurology, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore (N.R.M.); and the Departments of Ophthalmology and Neurology, Emory University School of Medicine, Atlanta (N.J.N., V.B.). Address reprint requests to Dr. Wong at the Singapore National Eye Center, 11 Third Hospital Ave., Singapore 168751, Singapore, or at wong.tien.yin@singhealth.com.sg. *A list of the members of the BONSAI Group is provided in the Supplementary Appendix, available at NEJM.org.

 

参考文献

1. Bruce BB, Lamirel C, Wright DW, et al. Nonmydriatic ocular fundus photography in the emergency department. N Engl J Med 2011;364:387-389.

2. Mackay DD, Garza PS, Bruce BB, Newman NJ, Biousse V. The demise of direct ophthalmoscopy: a modern clinical challenge. Neurol Clin Pract 2015;5:150-157.

3. Golombievski E, Doerrler MW, Ruland SD, McCoyd MA, Biller J. Frequency of direct funduscopy upon initial encounters for patients with headaches, altered mental status, and visual changes: a pilot study. Front Neurol 2015;6:233-233.

4. Biousse V, Bruce BB, Newman NJ. Ophthalmoscopy in the 21st century: the 2017 H. Houston Merritt Lecture. Neurology 2018;90:167-175.

5. Rigi M, Almarzouqi SJ, Morgan ML, Lee AG. Papilledema: epidemiology, etiology, and clinical management. Eye Brain 2015;7:47-57.

6. De Luca GC, Bartleson JD. When and how to investigate the patient with headache. Semin Neurol 2010;30:131-144.

7. Thulasi P, Fraser CL, Biousse V, Wright DW, Newman NJ, Bruce BB. Nonmydriatic ocular fundus photography among headache patients in an emergency department. Neurology 2013;80:432-437.

8. Medical Advisory Secretariat. Neuroimaging for the evaluation of chronic headaches: an evidence-based analysis. Ont Health Technol Assess Ser 2010;10:1-57.

9. American College of Radiology. ACR appropriateness criteria: headache. Revised 2019 (https://acsearch.acr.org/docs/69482/Narrative/. opens in new tab).

10. Tabatabai RR, Swadron SP. Headache in the emergency department: avoiding misdiagnosis of dangerous secondary causes. Emerg Med Clin North Am 2016;34:695-716.

11. National Hospital Ambulatory Medical Care Survey: 2016 emergency department summary tables (https://www.cdc.gov/nchs/data/nhamcs/web_tables/2016_ed_web_tables.pdf. opens in new tab).

12. Sachdeva V, Vasseneix C, Hage R, et al. Optic nerve head edema among patients presenting to the emergency department. Neurology 2018;90(5):e373-e379.

13. Poostchi A, Awad M, Wilde C, Dineen RA, Gruener AM. Spike in neuroimaging requests following the conviction of the optometrist Honey Rose. Eye (Lond) 2018;32:489-490.

14. Wong TY, Mitchell P. Hypertensive retinopathy. N Engl J Med 2004;351:2310-2317.

15. Bruce BB, Thulasi P, Fraser CL, et al. Diagnostic accuracy and use of nonmydriatic ocular fundus photography by emergency physicians: phase II of the FOTO-ED study. Ann Emerg Med 2013;62(1):28-33.e1.

16. Wong TY. Is retinal photography useful in the measurement of stroke risk? Lancet Neurol 2004;3:179-183.

17. Irani NK, Bidot S, Peragallo JH, Esper GJ, Newman NJ, Biousse V. Feasibility of a non-mydriatic ocular fundus camera in an outpatient neurology clinic. Neurologist 2020;25:19-23.

18. Ivan Y, Ramgopal S, Cardenas-Villa M, et al. Feasibility of the digital retinography system camera in the pediatric emergency department. Pediatr Emerg Care 2018;34:488-491.

19. Rathi S, Tsui E, Mehta N, Zahid S, Schuman JS. The current state of teleophthalmology in the United States. Ophthalmology 2017;124:1729-1734.

20. Wedekind L, Sainani K, Pershing S. Supply and perceived demand for teleophthalmology in triage and consultations in California emergency departments. JAMA Ophthalmol 2016;134:537-543.

21. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med 2019;380:1347-1358.

22. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436-444.

23. Liu Y, Chen PC, Krause J, Peng L. How to read articles that use machine learning: users’ guides to the medical literature. JAMA 2019;322:1806-1816.

24. Ting DSW, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: the technical and clinical considerations. Prog Retin Eye Res 2019;72:100759-100759.

25. Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med 2018;1:39-39.

26. Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402-2410.

27. Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 2017;318:2211-2223.

28. Bhaskaranand M, Ramachandra C, Bhat S, et al. The value of automated diabetic retinopathy screening with the EyeArt system: a study of more than 100,000 consecutive encounters from people with diabetes. Diabetes Technol Ther 2019;21:635-643.

29. Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 2018;125:1199-1206.

30. Liu H, Li L, Wormstone IM, et al. Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs. JAMA Ophthalmol 2019;137:1353-1360.

31. Zafar S, Cardenas YM, Leishangthem L, Yaddanapudi S. Opinion and special articles: amateur fundus photography with various new devices: our experience as neurology residents. Neurology 2018;90:897-901.

32. Bruce BB, Bidot S, Hage R, et al. Fundus Photography vs. Ophthalmoscopy Outcomes in the Emergency Department (FOTO-ED) phase III: Web-based, in-service training of emergency providers. Neuroophthalmology 2018;42:269-274.

33. Keane PA, Topol EJ. With an eye to AI and autonomous diagnosis. NPJ Digit Med 2018;1:40-40.

34. Medeiros FA, Jammal AA, Thompson AC. From machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs. Ophthalmology 2019;126:513-521.

35. Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digital Health 2019;1(6):e271-e297.

36. Liu TYA, Ting DSW, Yi PH, et al. Deep learning and transfer learning for optic disc laterality detection: Implications for machine learning in neuro-ophthalmology. J Neuroophthalmol 2019 August 22 (Epub ahead of print).

37. Akbar S, Akram MU, Sharif M, Tariq A, Yasin UU. Decision support system for detection of papilledema through fundus retinal images. J Med Syst 2017;41:66-66.

38. Ahn JM, Kim S, Ahn KS, Cho SH, Kim US. Accuracy of machine learning for differentiation between optic neuropathies and pseudopapilledema. BMC Ophthalmol 2019;19:178-178.

39. Keane P, Topol E. Reinventing the eye exam. Lancet 2019;394:2141-2141.

服务条款 | 隐私政策 | 联系我们