提示: 手机请竖屏浏览!

自给式神经肌肉骨骼假臂
Self-Contained Neuromusculoskeletal Arm Prostheses


Max Ortiz-Catalan ... 其他 • 2020.04.30

摘要


本文报告了4例上臂截肢后3~7年使用带有感觉和运动部件的骨锚定自给式机械臂的病例。通过该植入物,假手与植入上臂神经和肌肉内的电极之间可以进行双向通信;植入物通过骨整合(骨细胞附着在人造表面而不形成纤维组织的过程)的方式锚定在肱骨。该设备的使用不需要正式训练,而是依赖于用户激活运动的直觉意图和来自假臂的感觉反馈。每日使用可提高在工作和其他日常活动中感觉灵敏度和效率(由Promobilia基金会等资助)。

上臂截肢后使用的传统假臂和假手是通过接受腔(接受腔会压迫残肢)连接在肱骨上,并由自身肱二头肌和肱三头肌在没有躯体感觉反馈的情况下移动。高级的上臂假肢使用马达,马达可被来自患者残余肱二头肌和肱三头肌的信号激活。患者必须学会收缩这些肌肉来操作假臂,假臂末端是机械钩、夹持器或手。患者在观察假臂运动和听电动马达启动时能够获得偶然、间接的视觉和听觉提示,但除此之外该装置不提供感觉反馈。我们开发了一种自给式神经肌肉骨骼假臂,使用者能够从假手表面获得感觉反馈,从而能够在日常生活中凭直觉使用假臂。

我们在残肢处使用植入系统将假臂锚定在骨内,植入系统包括两个机械组件1:固定件(一个钛螺钉,可以骨整合或结合到骨内)和接合件(置于固定件内,经皮肤伸出身体)。假臂由手臂、肘关节和手组成,与接合件连接,接合件能够将机械负荷传递给固定件,随后固定件将负荷传递给骨(图1B)。固定件和接合件内的机械耦合组件将这些元件保持在一起并密封它们的接口。

 

图1. 采用目标肌肉神经再支配的神经肌肉骨骼假臂

正常神经解剖结构见图A。图B描绘了外科神经移植,肌肉和神经电极置入,骨骼连接的骨整合植入系统(接合件和固定件)以及外部假臂的双向通信(e-接合件螺钉、e-中心螺钉和电极连接器,“e”表示电馈通)。与以前的装置不同,“e-装置”允许假手与植入到上臂神经和肌肉内的电极进行直接通信。图C是神经肌肉骨骼假臂的放射照相图像,并标明了神经、肌肉和骨骼接口。

 

4例患者已有骨整合假臂,假臂带表面电极,可以控制假手,我们移除了固定件和接合件内的耦合组件,并用嵌入的电子连接器替换它们。连接器将接口密封,并在假臂和植入到神经和肌肉内的电极之间提供双向通信,从而创建了自给式神经肌肉骨骼人机接口(图1C)。这些假臂是市售的假肢肘关节和假手(ErgoArm和Sensor Hand,均由Ottobock[德国Duderstadt]提供),采用定制设计的嵌入式电子系统进行控制和神经刺激2。我们中心没有其他患者接受过类似的植入。

瑞典哥德堡地区伦理审查委员会批准了本研究,患者提供了书面知情同意。每个植入装置(称为e-OPRA植入系统)是由Integrum公司在瑞典莫恩达尔制造的。本研究由政府拨款资助,是学术中心和工业界之间的合作项目。工业界未参与植入装置的决策,未参与研究数据收集,也未参与本文撰写。前两名作者与Integrum签订了保密协议。第一作者是Integrum的顾问,并得到了政府拨款的支持,该作者撰写了本文的初稿。所有作者审核了数据,批准发表论文,并保证数据的准确性和完整性。





作者信息

Max Ortiz-Catalan, Ph.D., Enzo Mastinu, Ph.D., Paolo Sassu, M.D., Oskar Aszmann, M.D., and Rickard Brånemark, M.D., Ph.D.
From the Biomechatronics and Neurorehabilitation Laboratory, Department of Electrical Engineering, Chalmers University of Technology (M.O.-C., E.M.), the Department of Hand Surgery, Sahlgrenska University Hospital (P.S.), and the Department of Orthopedics, Gothenburg University (R.B.) — all in Gothenburg, Sweden; the Clinical Laboratory for Bionic Extremity Reconstruction, Division of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna (O.A.); and the Center for Extreme Bionics, Biomechatronics Group, MIT Media Lab, Massachusetts Institute of Technology, Cambridge (R.B.). Address reprint requests to Dr. Ortiz-Catalan at Chalmers University of Technology, Department of Electrical Engineering, Hörsalsvägen 11, SE-412 96, Gothenburg, Sweden, or at maxo@chalmers.se.

 

参考文献

1. Thesleff A, Brånemark R, Håkansson B, Ortiz-Catalan M. Biomechanical characterisation of bone-anchored implant systems for amputation limb prostheses: a systematic review. Ann Biomed Eng 2018;46:377-391.

2. Mastinu E, Doguet P, Botquin Y, Hakansson B, Ortiz-Catalan M. Embedded system for prosthetic control using implanted neuromuscular interfaces accessed via an osseointegrated implant. IEEE Trans Biomed Circuits Syst 2017;11:867-877.

3. Kuiken TA, Li G, Lock BA, et al. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 2009;301:619-628.

4. Ortiz-Catalan M, Brånemark R, Håkansson B, Delbeke J. On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. Biomed Eng Online 2012;11:33-33.

5. Pasluosta C, Kiele P, Stieglitz T. Paradigms for restoration of somatosensory feedback via stimulation of the peripheral nervous system. Clin Neurophysiol 2018;129:851-862.

6. Brånemark R, Brånemark P-I, Rydevik B, Myers RR. Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev 2001;38:175-181.

7. Jönsson S, Caine-Winterberger K, Brånemark R. Osseointegration amputation prostheses on the upper limbs: methods, prosthetics and rehabilitation. Prosthet Orthot Int 2011;35:190-200.

8. Ortiz-Catalan M, Håkansson B, Brånemark R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci Transl Med 2014;6(257):257re6-257re6.

9. Mastinu E, Branemark R, Aszmann O, Ortiz-Catalan M. Myoelectric signals and pattern recognition from implanted electrodes in two TMR subjects with an osseointegrated communication interface. In: Programs and abstracts of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, July 17–21, 2018:5174-7.

10. Ortiz-Catalan M, Wessberg J, Mastinu E, Naber A, Brenemark R. Patterned stimulation of peripheral nerves produces natural sensations with regards to location but not quality. IEEE Trans Med Robot Bionics 2019;1:199-203.

11. Petrini FM, Valle G, Strauss I, et al. Six-month assessment of a hand prosthesis with intraneural tactile feedback. Ann Neurol 2019;85:137-154.

12. George JA, Kluger DT, Davis TS, et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci Robot 2019;4(32):eaax2352-eaax2352.

13. Graczyk EL, Resnik L, Schiefer MA, Schmitt MS, Tyler DJ. Home use of a neural-connected sensory prosthesis provides the functional and psychosocial experience of having a hand again. Sci Rep 2018;8:9866-9866.

14. Cuberovic I, Gill A, Resnik LJ, Tyler DJ, Graczyk EL. Learning of artificial sensation through long-term home use of a sensory-enabled prosthesis. Front Neurosci 2019;13:853-853.

15. Salminger S, Sturma A, Hofer C, et al. Long-term implant of intramuscular sensors and nerve transfers for wireless control of robotic arms in above-elbow amputees. Sci Robot 2019;4(32):eaaw6306-eaaw6306.

16. Mastinu E, Clemente F, Sassu P, et al. Grip control and motor coordination with implanted and surface electrodes while grasping with an osseointegrated prosthetic hand. J Neuroeng Rehabil 2019;16:49-49.

17. Schiefer MA, Graczyk EL, Sidik SM, Tan DW, Tyler DJ. Artificial tactile and proprioceptive feedback improves performance and confidence on object identification tasks. PLoS One 2018;13(12):e0207659-e0207659.

18. Zollo L, Di Pino G, Ciancio AL, et al. Restoring tactile sensations via neural interfaces for real-time force-and-slippage closed-loop control of bionic hands. Sci Robot 2019;4(27):eaau9924-eaau9924.

19. Page DM, George JA, Kluger DT, et al. Motor control and sensory feedback enhance prosthesis embodiment and reduce phantom pain after long-term hand amputation. Front Hum Neurosci 2018;12:352-352.

20. Clemente F, Valle G, Controzzi M, et al. Intraneural sensory feedback restores grip force control and motor coordination while using a prosthetic hand. J Neural Eng 2019;16:026034-026034.

服务条款 | 隐私政策 | 联系我们