提示: 手机请竖屏浏览!

起源于精原细胞的完全性葡萄胎
Spermatogonium-Derived Complete Hydatidiform Mole


Hirokazu Usui ... 妇产科和儿科 • 2021.03.11

摘要


完全性葡萄胎(CHM)是仅包含精子来源染色体的孕体。我们在本文中报道了一例与父源体细胞具有相同基因组DNA的CHM。该CHM是在子宫内植入胚泡的一名女性体内发生,而胚泡的获取方式是在体外向其一个卵母细胞内注射推测的圆形精子细胞。该CHM在基因上与其丈夫的外周白细胞相同,且不含母本细胞核DNA。我们提出的假设是由于疏忽,向卵母细胞内注射时选出的是精原细胞,而非圆形精子细胞。CHM发展成妊娠滋养细胞肿瘤,并在化疗后消退(由日本学术振兴会[Japan Society for the Promotion of Science]资助)。

葡萄胎是滋养细胞增生性疾病,有可能发展成妊娠滋养细胞肿瘤1,2。根据其组织病理学特征,葡萄胎分成完全性葡萄胎(CHM)和部分性葡萄胎(PHM)。几乎所有CHM都是雄核发育二倍体;一些CHM是双亲二倍体3。雄核发育CHM起源于精子,属于单精或双精入卵1,2。CHM的遗传起源可应用短串联重复序列(STR)多态性分析、单核苷酸多态性(SNP)阵列或联合应用上述两种方法来估计1,4,5

圆形精子细胞注射是在男性患无精子症的情况下,于体外应用的辅助生殖技术6。该技术涉及圆形精子细胞(精子的单倍体前体)的提取和胞质内注射。准确选出圆形精子细胞是成功的关键,但选择标准尚未完全建立7,8。尽管如此,自1995年以来,已有至少90名婴儿通过圆形精子细胞注射技术出生9,10。我们在本文中报道了一例有完整父本染色体组的雄核发育CHM患者,CHM是在该患者接受推测的圆形精子细胞注射后发生。





作者信息

Hirokazu Usui, M.D., Ph.D., and Makio Shozu, M.D., Ph.D.
From the Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan. Address reprint requests to Dr. Usui at the Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan, or at hirokazu-usui@faculty.chiba-u.jp.

 

参考文献

1. Hui P, Buza N, Murphy KM, Ronnett BM. Hydatidiform moles: genetic basis and precision diagnosis. Annu Rev Pathol 2017;12:449-485.

2. Seckl MJ, Sebire NJ, Berkowitz RS. Gestational trophoblastic disease. Lancet 2010;376:717-729.

3. Murdoch S, Djuric U, Mazhar B, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet 2006;38:300-302.

4. Usui H, Qu J, Sato A, et al. Gestational trophoblastic neoplasia from genetically confirmed hydatidiform moles: prospective observational cohort study. Int J Gynecol Cancer 2018;28:1772-1780.

5. Usui H, Nakabayashi K, Maehara K, Hata K, Shozu M. Genome-wide single nucleotide polymorphism array analysis unveils the origin of heterozygous androgenetic complete moles. Sci Rep 2019;9:12542-12542.

6. Yanagimachi R. Intracytoplasmic injection of spermatozoa and spermatogenic cells: its biology and applications in humans and animals. Reprod Biomed Online 2005;10:247-288.

7. Tesarik J, Mendoza C, Testart J. Viable embryos from injection of round spermatids into oocytes. N Engl J Med 1995;333:525-525.

8. Practice Committee of American Society for Reproductive Medicine; Practice Committee of Society for Assisted Reproductive Technology. Round spermatid nucleus injection (ROSNI). Fertil Steril 2008;90:5 Suppl:S199-S201.

9. Tanaka A, Nagayoshi M, Takemoto Y, et al. Fourteen babies born after round spermatid injection into human oocytes. Proc Natl Acad Sci U S A 2015;112:14629-14634.

10. Tanaka A, Suzuki K, Nagayoshi M, et al. Ninety babies born after round spermatid injection into oocytes: survey of their development from fertilization to 2 years of age. Fertil Steril 2018;110:443-451.

11. Johnsen SG. Testicular biopsy score count — a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones 1970;1:2-25.

12. FIGO Oncology Committee. FIGO staging for gestational trophoblastic neoplasia 2000. Int J Gynaecol Obstet 2002;77:285-287.

13. Matsui H, Iitsuka Y, Seki K, Sekiya S. Comparison of chemotherapies with methotrexate, VP-16 and actinomycin-D in low-risk gestational trophoblastic disease. Remission rates and drug toxicities. Gynecol Obstet Invest 1998;46:5-8.

14. Peiffer DA, Le JM, Steemers FJ, et al. High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res 2006;16:1136-1148.

15. Pan Z, Usui H, Sato A, Shozu M. Complete hydatidiform moles are composed of paternal chromosomes and maternal mitochondria. Mitochondrial DNA A DNA Mapp Seq Anal 2018;29:943-950.

16. Azuma C, Saji F, Tokugawa Y, et al. Application of gene amplification by polymerase chain reaction to genetic analysis of molar mitochondrial DNA: the detection of anuclear empty ovum as the cause of complete mole. Gynecol Oncol 1991;40:29-33.

17. Tomizawa S, Sasaki H. Genomic imprinting and its relevance to congenital disease, infertility, molar pregnancy and induced pluripotent stem cell. J Hum Genet 2012;57:84-91.

18. Sanchez-Delgado M, Martin-Trujillo A, Tayama C, et al. Absence of maternal methylation in biparental hydatidiform moles from women with NLRP7 maternal-effect mutations reveals widespread placenta-specific imprinting. PLoS Genet 2015;11(11):e1005644-e1005644.

19. Ishiguro K-I. The cohesin complex in mammalian meiosis. Genes Cells 2019;24:6-30.

20. Surani MA, Barton SC, Norris ML. Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome. Cell 1986;45:127-136.

21. Smallwood SA, Kelsey G. De novo DNA methylation: a germ cell perspective. Trends Genet 2012;28:33-42.

22. Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 2008;9:129-140.

23. Marques CJ, João Pinho M, Carvalho F, Bièche I, Barros A, Sousa M. DNA methylation imprinting marks and DNA methyltransferase expression in human spermatogenic cell stages. Epigenetics 2011;6:1354-1361.

24. ESHRE PGT-SR/PGT-A Working Group, Coonen E, Rubio C, et al. ESHRE PGT Consortium good practice recommendations for the detection of structural and numerical chromosomal aberrations. Hum Reprod Open 2020;2020(3):hoaa017-hoaa017.

服务条款 | 隐私政策 | 联系我们