提示: 手机请竖屏浏览!

瑞德西韦治疗COVID-19的初步报告
Remdesivir for the Treatment of Covid-19 — Preliminary Report


John H. Beigel ... 呼吸系统疾病 • 2020.05.22
相关阅读
• DNA疫苗在猴体内产生对抗SARS-CoV-2感染的防护作用 • COVID-19的不同临床病程应归因于病毒还是宿主因素 • 推进RNA疫苗研发工作 • COVID-19与肾移植 • 中国武汉孕产妇COVID-19患者的临床特征 • COVID-19大流行期间治疗的紧迫性——让我们随学随用 • 羟氯喹治疗COVID-19住院患者的观察性研究 • SARS-CoV-2的PCR检测法:对检测法进行检测 • 进入SARS-CoV-2抗体检测的时代:问题比答案还多 • 不为人知的代价——COVID-19全球大流行对其他疾病患者的影响 • 瑞德西韦同情用药治疗重症COVID-19患者 • COVID-19大流行时期的药物评估 • 托珠单抗有可能减轻COVID-19患者的“细胞因子风暴” • COVID-19的潜在并发症吉兰-巴雷综合征 • 如何快速发现抗病毒药

摘要


背景

人们已经对治疗2019冠状病毒病(COVID-19)的数种药物进行了评估,但所有药物都未被发现有效。

 

方法 

我们开展了一项随机、安慰剂对照、双盲试验,对确诊下呼吸道受累的住院COVID-19成年患者静脉输注瑞德西韦(remdesivir)。患者被随机分配接受瑞德西韦治疗(第1天给予200 mg负荷剂量,然后每天给予100 mg,连续治疗最多9天)或安慰剂治疗(最多10天)。主要结局是恢复时间,其定义为从医院出院或仅为控制感染而住院。

 

结果

共计1063例患者接受了随机分组。数据和安全监察委员会发现瑞德西韦组患者恢复时间缩短,基于这一结果,其建议提前对结果揭盲。随机分组后,共1059例(瑞德西韦组538例,安慰剂组521例)患者的初步结果可供分析,显示瑞德西韦治疗组中位恢复时间为11天(95%置信区间[CI]为9~12),而安慰剂组为15天(95% CI,13~19)(恢复速度率比,1.32;95% CI,1.12~1.55;P<0.001)。应用Kaplan-Meier曲线估计14天内死亡率,瑞德西韦组为7.1%,安慰剂组为11.9%(死亡风险比为0.70;95% CI,0.47~1.04)。随机化患者中,瑞德西韦组有114例发生了严重不良事件(在541例患者中占比21.1%),安慰剂组有141例发生了严重不良事件(在522例患者中占比27.0%)。

 

结论

在因COVID-19住院并且确诊下呼吸道感染的成年患者中,在缩短恢复时间方面,瑞德西韦优于安慰剂。(由美国国立过敏和传染病研究所及其他机构资助;ACCT-1在ClinicalTrials.gov注册号为NCT04280705。)





作者信息

John H. Beigel, M.D., Kay M. Tomashek, M.D., M.P.H., Lori E. Dodd, Ph.D., Aneesh K. Mehta, M.D., Barry S. Zingman, M.D., Andre C. Kalil, M.D., M.P.H., Elizabeth Hohmann, M.D., Helen Y. Chu, M.D., M.P.H., Annie Luetkemeyer, M.D., Susan Kline, M.D., M.P.H., Diego Lopez de Castilla, M.D., M.P.H., Robert W. Finberg, M.D., Kerry Dierberg, M.D., M.P.H., Victor Tapson, M.D., Lanny Hsieh, M.D., Thomas F. Patterson, M.D., Roger Paredes, M.D., Ph.D., Daniel A. Sweeney, M.D., William R. Short, M.D., M.P.H., Giota Touloumi, Ph.D., David Chien Lye, M.B., B.S., Norio Ohmagari, M.D., Ph.D., Myoung-don Oh, M.D., Guillermo M. Ruiz-Palacios, M.D., Thomas Benfield, M.D., Gerd Fätkenheuer, M.D., Mark G. Kortepeter, M.D., Robert L. Atmar, M.D., C. Buddy Creech, M.D., M.P.H., Jens Lundgren, M.D., Abdel G. Babiker, Ph.D., Sarah Pett, Ph.D., James D. Neaton, Ph.D., Timothy H. Burgess, M.D., M.P.H., Tyler Bonnett, M.S., Michelle Green, M.P.H., M.B.A., Mat Makowski, Ph.D., Anu Osinusi, M.D., M.P.H., Seema Nayak, M.D., and H. Clifford Lane, M.D. for the ACTT-1 Study Group Members*
From the National Institute of Allergy and Infectious Diseases, National Institutes of Health (J.H.B., K.M.T., L.E.D., S.N., H.C.L.), and the Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences (T.H.B.), Bethesda, the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (T. Bonnett), and Emmes, Rockville (M.G., M.M.) — all in Maryland; Emory University, Atlanta (A.K.M.); Montefiore Medical Center–Albert Einstein College of Medicine (B.S.Z.) and NYU Langone Health and NYC Health + Hospitals– Bellevue (K.D.), New York; University of Nebraska Medical Center, Omaha (A.C.K., M.G.K.); Massachusetts General Hospital, Boston (E.H.), and University of Massachusetts Medical School, Worcester (R.W.F.); University of Washington, Seattle (H.Y.C.), and Evergreen Health Medical Center, Kirkland (D.L.C.) — both in Washington; University of California, San Francisco, San Francisco (A.L.), Cedars Sinai Medical Center, Los Angeles (V.T.), University of California, Irvine, Irvine (L.H.), University of California, San Diego, La Jolla (D.A.S.), and Gilead Sciences, Foster City (A.O.) — all in California; University of Minnesota (S.K.) and University of Minnesota, School of Public Health and INSIGHT (J.D.N.), Minneapolis; University of Texas Health San Antonio, University Health System, and the South Texas Veterans Health Care System, San Antonio (T.F.P.), and Baylor College of Medicine, Houston (R.L.A.); Hospital Germans Trias i Pujol & irsiCaixa AIDS Research Institute, Badalona, Spain (R.P.); University of Pennsylvania, Philadelphia (W.R.S.); Medical School, National and Kapodistrian University of Athens, Athens (G.T.); National Center for Infectious Diseases–Tan Tock Seng Hospital–Lee Kong Chian School of Medicine–Yong Loo Lin School of Medicine, Singapore, Singapore (D.C.L.); the National Center for Global Health and Medicine Hospital, Tokyo (N.O.); Seoul National University Hospital, Seoul, South Korea (M.O.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (G.M.R.-P.); the Department of Infectious Diseases, Amager Hvidovre Hospital–University of Copenhagen, Hvidovre (T. Benfield), and Rigshospitalet, Department of Infectious Diseases (CHIP) and INSIGHT, Copenhagen (J.L.) — both in Denmark; University Hospital of Cologne, Cologne, Germany (G.F.); Vanderbilt University Medical Center, Nashville (C.B.C.); and University College London, MRC Clinical Trials Unit at UCL and INSIGHT, London (A.G.B., S.P.). Address reprint requests to Dr. Beigel at the National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Ln., Rm. 7E60, MSC 9826, Rockville, MD 20892-9826, or at jbeigel@niaid.nih.gov. *A complete list of members of the ACTT-1 Study Group is provided in the Supplementary Appendix, available at NEJM.org.

 

参考文献

1. Helmy YA, Fawzy M, Elaswad A, Sobieh A, Kenney SP, Shehata AA. The COVID-19 pandemic: a comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. J Clin Med 2020;9(4):E1225-E1225.

2. Cao B, Wang Y, Wen D, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020;382:1787-1799.

3. Borba MGS, Val FFA, Sampaio VS, et al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw Open 2020;3(4):e208857-e208857.

4. Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020;11:222-222.

5. Agostini ML, Andres EL, Sims AC, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 2018;9(2):e00221-18-e00221-18.

6. Brown AJ, Won JJ, Graham RL, et al. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res 2019;169:104541-104541.

7. Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017;9:eaal3653-eaal3653.

8. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020;30:269-271.

9. de Wit E, Rasmussen AL, Falzarano D, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proc Natl Acad Sci U S A 2013;110:16598-16603.

10. de Wit E, Feldmann F, Cronin J, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci U S A 2020;117:6771-6776.

11. Royal College of Physicians. National Early Warning Score (NEWS) 2. 2017 (https://www.rcplondon.ac.uk/projects/outputs/national-early-warning-score-news-2. opens in new tab).

12. King JC, Beigel JH, Ison MG, et al. Clinical development of therapeutic agents for hospitalized patients with influenza: challenges and innovations. Open Forum Infect Dis 2019;6:ofz137-ofz137.

13. Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020;395:1569-1578.

14. The CONSORT Group. 3b. Changes to trial design (http://www.consort-statement.org/consort-2010. opens in new tab).

服务条款 | 隐私政策 | 联系我们