提示: 手机请竖屏浏览!

对早产儿应用较高和较低血红蛋白输血阈值的比较
Higher or Lower Hemoglobin Transfusion Thresholds for Preterm Infants


Haresh Kirpalani ... 妇产科和儿科 • 2020.12.31
相关阅读
• 新生儿血小板输注阈值的随机试验

摘要


背景

有限的数据提示,给患贫血的极低出生体重儿进行红细胞输血的过程中,应用较高的血红蛋白阈值有可能降低认知发育迟缓的风险。

 

方法

我们开展了一项开放标签的多中心试验,本试验纳入出生体重≤1,000 g并且在胎龄22周0日至28周6日出生的婴儿;我们在婴儿出生后48小时内将其随机分组,两组分别以较高或较低的血红蛋白阈值接受红细胞输血,直至停经后胎龄36周或者出院(以较早的一项为准)。主要结局是由婴儿22~26月龄(针对早产进行了校正)时死亡或神经发育障碍(认知发育迟缓、大脑性瘫痪或者听力或视力丧失)构成的复合结局。

 

结果

共计1,824名婴儿(平均出生体重,756 g;平均胎龄,25.9周)被随机分组。在整个治疗期间的输血前平均血红蛋白水平方面,两组间有1.9 g/dL(19 g/L)的差异。本试验获得了1,692名婴儿(92.8%)的主要结局数据。在较高阈值组的845名婴儿中,423名(50.1%)死亡或者存活但有神经发育障碍,而在较低阈值组847名婴儿中,422名(49.8%)死亡或者存活但有神经发育障碍(针对出生体重分层和试验中心校正后的相对危险度,1.00;95%置信区间[CI],0.92~1.10;P=0.93)。2岁时,较高和较低阈值组的死亡率(分别为16.2%和15.0%)和神经发育障碍发生率(分别为39.6%和40.3%)相似。出院时,两组中无重度并发症的生存率分别为28.5%和30.9%。严重不良事件发生率分别为22.7%和21.7%。

 

结论

给极低出生体重儿进行红细胞输血的过程中,应用较高的血红蛋白阈值未能改善22~26月龄(针对早产校正后)时无神经发育障碍的生存率(由美国国立心肺和血液研究所[National Heart, Lung, and Blood Institute]等资助,TOP在ClinicalTrials.gov注册号为NCT01702805)。





作者信息

Haresh Kirpalani, B.M., Edward F. Bell, M.D., Susan R. Hintz, M.D., Sylvia Tan, M.S., Barbara Schmidt, M.D., Aasma S. Chaudhary, B.S., R.R.T., Karen J. Johnson, R.N., B.S.N., Margaret M. Crawford, B.S., C.C.R.P., Jamie E. Newman, Ph.D., M.P.H., Betty R. Vohr, M.D., Waldemar A. Carlo, M.D., Carl T. D’Angio, M.D., Kathleen A. Kennedy, M.D., M.P.H., Robin K. Ohls, M.D., Brenda B. Poindexter, M.D., Kurt Schibler, M.D., Robin K. Whyte, M.B., B.S., John A. Widness, M.D., John A.F. Zupancic, M.D., Sc.D., Myra H. Wyckoff, M.D., William E. Truog, M.D., Michele C. Walsh, M.D., Valerie Y. Chock, M.D., Abbot R. Laptook, M.D., Gregory M. Sokol, M.D., Bradley A. Yoder, M.D., Ravi M. Patel, M.D., C. Michael Cotten, M.D., M.H.S., Melissa F. Carmen, M.D., Uday Devaskar, M.D., Sanjay Chawla, M.D., Ruth Seabrook, M.D., Rosemary D. Higgins, M.D., and Abhik Das, Ph.D. for the Eunice Kennedy Shriver NICHD Neonatal Research Network*
From the Department of Pediatrics, University of Pennsylvania, and Children’s Hospital of Philadelphia, Philadelphia (H.K., B.S., A.S.C.); the Department of Pediatrics, University of Iowa, Iowa City (E.F.B., K.J.J., J.A.W.); the Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Lucile Packard Children’s Hospital, Palo Alto (S.R.H., V.Y.C.), and the Department of Pediatrics, University of California, Los Angeles, Los Angeles (U.D.) — both in California; the Biostatistics and Epidemiology Division, RTI International, Research Triangle Park (S.T., M.M.C.), and the Department of Pediatrics, Duke University School of Medicine, Durham (C.M.C.) — both in North Carolina; the Biostatistics and Epidemiology Division, RTI International, Rockville (J.E.N., A.D.), and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda (R.D.H.) — both in Maryland; the Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, RI (B.R.V., A.R.L.); the Division of Neonatology, University of Alabama at Birmingham, Birmingham (W.A.C.); the University of Rochester School of Medicine and Dentistry, Rochester, NY (C.T.D., M.F.C.); the Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston (K.A.K.), and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas (M.H.W.); the University of New Mexico Health Sciences Center, Albuquerque (R.K.O.); the Department of Pediatrics, Division of Neonatology, University of Utah School of Medicine, Salt Lake City (R.K.O., B.A.Y.); the Department of Pediatrics, Indiana University School of Medicine, Indianapolis (B.B.P., G.M.S.); Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati (B.B.P., K.S.), the Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University, Cleveland (M.C.W.), and Nationwide Children’s Hospital and the Department of Pediatrics, Ohio State University College of Medicine, Columbus (R.S.); the Department of Pediatrics, Dalhousie University, Halifax, NS, Canada (R.K.W.); the Department of Neonatology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston (J.A.F.Z.); the Department of Pediatrics, Children’s Mercy Hospital, Kansas City, MO (W.E.T.); Emory University School of Medicine, Department of Pediatrics, Children’s Healthcare of Atlanta, Atlanta (R.M.P.); the Department of Pediatrics, Wayne State University, Detroit (S.C.); and the College of Health and Human Services, George Mason University, Fairfax, VA (R.D.H.). Address reprint requests to Dr. Kirpalani at the Division of Neonatology, Children’s Hospital of Philadelphia, University of Pennsylvania, 34th St. and Civic Center Blvd., Philadelphia PA 19104, or at kirpalanih@email.chop.edu. *The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Neonatal Research Network members are listed in the Supplementary Appendix, available with the full text of this article at NEJM.org.

 

参考文献

1. Patel RM, Meyer EK, Widness JA. Research opportunities to improve neonatal red blood cell transfusion. Transfus Med Rev 2016;30:165-173.

2. Guillén U, Cummings JJ, Bell EF, et al. International survey of transfusion practices for extremely premature infants. Semin Perinatol 2012;36:244-247.

3. Kirpalani H, Whyte RK, Andersen C, et al. The Premature Infants in Need of Transfusion (PINT) study: a randomized, controlled trial of a restrictive (low) versus liberal (high) transfusion threshold for extremely low birth weight infants. J Pediatr 2006;149:301-307.

4. Bell EF, Strauss RG, Widness JA, et al. Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants. Pediatrics 2005;115:1685-1691.

5. Whyte R, Kirpalani H. Low versus high haemoglobin concentration threshold for blood transfusion for preventing morbidity and mortality in very low birth weight infants. Cochrane Database Syst Rev 2011;11:CD000512-CD000512.

6. Whyte RK, Kirpalani H, Asztalos EV, et al. Neurodevelopmental outcome of extremely low birth weight infants randomly assigned to restrictive or liberal hemoglobin thresholds for blood transfusion. Pediatrics 2009;123:207-213.

7. Nopoulos PC, Conrad AL, Bell EF, et al. Long-term outcome of brain structure in premature infants: effects of liberal vs restricted red blood cell transfusions. Arch Pediatr Adolesc Med 2011;165:443-450.

8. Fetus and Newborn Committee, Canadian Paediatric Society. Guidelines for transfusion of erythrocytes to neonates and premature infants. CMAJ 1992;147:1781-1792.

9. Mann H. Controversial choice of a control intervention in a trial of ventilator therapy in ARDS: standard of care arguments in a randomised controlled trial. J Med Ethics 2005;31:548-553.

10. Bayley N. Bayley scales of infant and toddler development. 3rd ed. San Antonio, TX: Harcourt Assessments, 2006.

11. Palisano RJ, Cameron D, Rosenbaum PL, Walter SD, Russell D. Stability of the Gross Motor Function Classification System. Dev Med Child Neurol 2006;48:424-428.

12. Achenbach TM, Rescorla LA. Manual for the ASEBA preschool forms & profiles. Burlington: University of Vermont, Research Center for Children, Youth, & Families, 2001.

13. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr 1978;92:529-534.

14. International Committee for the Classification of Retinopathy of Prematurity. The International Classification of Retinopathy of Prematurity revisited. Arch Ophthalmol 2005;123:991-999.

15. Walsh MC, Wilson-Costello D, Zadell A, Newman N, Fanaroff A. Safety, reliability, and validity of a physiologic definition of bronchopulmonary dysplasia. J Perinatol 2003;23:451-456.

16. Bell MJ, Ternberg JL, Feigin RD, et al. Neonatal necrotizing enterocolitis: therapeutic decisions based upon clinical staging. Ann Surg 1978;187:1-7.

17. Olsen IE, Groveman SA, Lawson ML, Clark RH, Zemel BS. New intrauterine growth curves based on United States data. Pediatrics 2010;125:e214-e224.

18. Juul SE, Comstock BA, Wadhawan R, et al. A randomized trial of erythropoietin for neuroprotection in preterm infants. N Engl J Med 2020;382:233-243.

19. Franz AR, Engel C, Bassler D, et al. Effects of liberal vs restrictive transfusion thresholds on survival and neurocognitive outcomes in extremely low-birth-weight infants: the ETTNO randomized clinical trial. JAMA 2020;324:560-570.

20. Andersen CC, Hodyl NA, Kirpalani HM, Stark MJ. A theoretical and practical approach to defining “adequate oxygenation” in the preterm newborn. Pediatrics 2017;139(4):e20161117-e20161117.

21. Keir AK, Yang J, Harrison A, Pelausa E, Shah PS. Temporal changes in blood product usage in preterm neonates born at less than 30 weeks’ gestation in Canada. Transfusion 2015;55:1340-1346.

22. Maier RF, Sonntag J, Walka MM, Liu G, Metze BC, Obladen M. Changing practices of red blood cell transfusions in infants with birth weights less than 1000 g. J Pediatr 2000;136:220-224.

23. Widness JA, Seward VJ, Kromer IJ, Burmeister LF, Bell EF, Strauss RG. Changing patterns of red blood cell transfusion in very low birth weight infants. J Pediatr 1996;129:680-687.

24. Nunes dos Santos AM, Guinsburg R, de Almeida MF, et al. Red blood cell transfusions are independently associated with intra-hospital mortality in very low birth weight preterm infants. J Pediatr 2011;159(3):371-376.e1.

25. Kirpalani H, Whyte R. Truths, associations, and hypotheses. J Pediatr 2011;159:359-361.

26. McGrady GA, Rettig PJ, Istre GR, Jason JM, Holman RC, Evatt BL. An outbreak of necrotizing enterocolitis: association with transfusions of packed red blood cells. Am J Epidemiol 1987;126:1165-1172.

27. Kirpalani H, Zupancic JA. Do transfusions cause necrotizing enterocolitis? The complementary role of randomized trials and observational studies. Semin Perinatol 2012;36:269-276.

28. Mohamed A, Shah PS. Transfusion associated necrotizing enterocolitis: a meta-analysis of observational data. Pediatrics 2012;129:529-540.

29. Hay S, Zupancic JA, Flannery DD, Kirpalani H, Dukhovny D. Should we believe in transfusion-associated enterocolitis? Applying a GRADE to the literature. Semin Perinatol 2017;41:80-91.

30. Patel RM, Knezevic A, Shenvi N, et al. Association of red blood cell transfusion, anemia, and necrotizing enterocolitis in very low-birth-weight infants. JAMA 2016;315:889-897.

31. Slidsborg C, Jensen A, Forman JL, et al. Neonatal risk factors for treatment-demanding retinopathy of prematurity: a Danish national study. Ophthalmology 2016;123:796-803.

32. Cooke RW, Drury JA, Yoxall CW, James C. Blood transfusion and chronic lung disease in preterm infants. Eur J Pediatr 1997;156:47-50.

33. Christensen RD, Baer VL, Lambert DK, Ilstrup SJ, Eggert LD, Henry E. Association, among very-low-birthweight neonates, between red blood cell transfusions in the week after birth and severe intraventricular hemorrhage. Transfusion 2014;54:104-108.

34. Zagol K, Lake DE, Vergales B, et al. Anemia, apnea of prematurity, and blood transfusions. J Pediatr 2012;161(3):417-421.e1.

35. Abu Jawdeh EG, Martin RJ, Dick TE, Walsh MC, Di Fiore JM. The effect of red blood cell transfusion on intermittent hypoxemia in ELBW infants. J Perinatol 2014;34:921-925.

36. Collins R, Bowman L, Landray M, Peto R. The magic of randomization versus the myth of real-world evidence. N Engl J Med 2020;382:674-678.

37. Silverman WA. Retrolental fibroplasia: a modern parable. New York: Grune & Stratton, 1980.

38. Fergusson D, Hébert PC, Lee SK, et al. Clinical outcomes following institution of universal leukoreduction of blood transfusions for premature infants. JAMA 2003;289:1950-1956.

39. Fergusson DA, Hébert P, Hogan DL, et al. Effect of fresh red blood cell transfusions on clinical outcomes in premature, very low-birth-weight infants: the ARIPI randomized trial. JAMA 2012;308:1443-1451.

40. Spinella PC, Tucci M, Fergusson DA, et al. Effect of fresh vs standard-issue red blood cell transfusions on multiple organ dysfunction syndrome in critically ill pediatric patients: a randomized clinical trial. JAMA 2019;322:2179-2190.

服务条款 | 隐私政策 | 联系我们