提示: 手机请竖屏浏览!

BNT162b2 COVID-19 mRNA疫苗的安全性和有效性
Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine


Fernando P. Polack ... 呼吸系统疾病 • 2020.12.31
相关阅读
• 我们为什么仍然需要对COVID-19疫苗开展安慰剂对照试验 • SARS-CoV-2疫苗接种——一分预防胜似十分治疗 • 两种基于RNA的COVID-19候选疫苗的安全性和免疫原性 • 推进RNA疫苗研发工作

摘要


背景

SARS-CoV-2感染及其所致疾病COVID-19已在此次的全球大流行中累及数千万人。我们迫切需要安全有效的疫苗。

 

方法

在一项仍在进行的多国、安慰剂对照、观察者设盲的关键有效性试验中,我们以1∶1比例将≥16岁的参与者随机分组,两组分别间隔21日接种两剂安慰剂或BNT162b2候选疫苗(每剂30 μg)。BNT162b2是一种由脂质纳米颗粒制成的核苷修饰RNA(modRNA)疫苗,能够编码融合前稳定、膜锚定的SARS-CoV-2全长棘突蛋白。主要终点是疫苗预防COVID-19(需经实验室证实)的有效性和安全性。

 

结果

共计43,548例参与者被随机分组,其中43,448例接受了注射:21,720例注射了BNT162b2,21,728例注射了安慰剂。BNT162b2组8例参与者和安慰剂组162例参与者发生了接种第二剂至少7日后发病的COVID-19;BNT162b2预防COVID-19的有效率为95%(95% CI,90.3~97.6)。在根据年龄、性别、人种、族群、基线体质指数(体重[kg]除以[身高{m}的平方])和是否患合并症定义的各亚组中,我们均观察到了相似的疫苗有效率(一般为90%~100%)。在接种第一剂后发生的10例重症COVID-19中,9例发生于安慰剂组,1例发生于BNT162b2组。BNT162b2的安全性特征包括短期的轻度至中度注射部位疼痛、疲劳和头痛。疫苗组和安慰剂组的严重不良事件发生率均较低且相似。

 

结论

16岁及以上人群接种两剂BNT162b2后在预防COVID-19方面达到了95%的有效率。中位2个月期间的安全性与其他病毒疫苗相似(由BioNTech和辉瑞资助,在ClinicalTrials.gov注册号为NCT04368728)。





作者信息

Fernando P. Polack, M.D., Stephen J. Thomas, M.D., Nicholas Kitchin, M.D., Judith Absalon, M.D., Alejandra Gurtman, M.D., Stephen Lockhart, D.M., John L. Perez, M.D., Gonzalo Pérez Marc, M.D., Edson D. Moreira, M.D., Cristiano Zerbini, M.D., Ruth Bailey, B.Sc., Kena A. Swanson, Ph.D., Satrajit Roychoudhury, Ph.D., Kenneth Koury, Ph.D., Ping Li, Ph.D., Warren V. Kalina, Ph.D., David Cooper, Ph.D., Robert W. Frenck, Jr., M.D., Laura L. Hammitt, M.D., Özlem Türeci, M.D., Haylene Nell, M.D., Axel Schaefer, M.D., Serhat Ünal, M.D., Dina B. Tresnan, D.V.M., Ph.D., Susan Mather, M.D., Philip R. Dormitzer, M.D., Ph.D., Uğur Şahin, M.D., Kathrin U. Jansen, Ph.D., and William C. Gruber, M.D. for the C4591001 Clinical Trial Group*
From Fundacion INFANT (F.P.P.) and iTrials-Hospital Militar Central (G.P.M.), Buenos Aires; State University of New York, Upstate Medical University, Syracuse (S.J.T.), and Vaccine Research and Development, Pfizer, Pearl River (J.A., A.G., K.A.S., K.K., W.V.K., D.C., P.R.D., K.U.J., W.C.G.) — both in New York; Vaccine Research and Development, Pfizer, Hurley, United Kingdom (N.K., S.L., R.B.); Vaccine Research and Development (J.L.P., P.L.) and Worldwide Safety, Safety Surveillance and Risk Management (S.M.), Pfizer, Collegeville, PA; Associação Obras Sociais Irmã Dulce and Oswaldo Cruz Foundation, Bahia (E.D.M.), and Centro Paulista de Investigação Clinica, São Paulo (C.Z.) — both in Brazil; Global Product Development, Pfizer, Peapack, NJ (S.R.); Cincinnati Children’s Hospital, Cincinnati (R.W.F.); Johns Hopkins Bloomberg School of Public Health, Baltimore (L.L.H.); BioNTech, Mainz (ÖT., U.Ş.), and Medizentrum Essen Borbeck, Essen (A.S.) — both in Germany; Tiervlei Trial Centre, Karl Bremer Hospital, Cape Town, South Africa (H.N.); Hacettepe University, Ankara, Turkey (S.Ü.); and Worldwide Safety, Safety Surveillance and Risk Management, Pfizer, Groton, CT (D.B.T.). Address reprint requests to Dr. Absalon at Pfizer, 401 N. Middletown Rd., Pearl River, NY 10965, or at judith.absalon@pfizer.com. *A complete list of investigators in the C4591001 Clinical Trial Group is provided in the Supplementary Appendix, available at NEJM.org.

 

参考文献

1. Johns Hopkins University Coronavirus Resource Center. COVID-19 dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. 2020 (https://coronavirus.jhu.edu/map.html. opens in new tab).

2. World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 — 11 March 2020 (https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. opens in new tab).

3. Centers for Disease Control and Prevention. COVID-19 information page (https://www.cdc.gov/coronavirus/2019-ncov/index.html. opens in new tab).

4. Walsh EE, Frenck RW Jr, Falsey AR, et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Engl J Med 2020;383:2439-2450.

5. Pardi N, Tuyishime S, Muramatsu H, et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release 2015;217:345-351.

6. Karikó K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 2008;16:1833-1840.

7. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260-1263.

8. Sahin U, Muik A, Vogler I, et al. BNT162b2 induces SARS-CoV-2-neutralising antibodies and T cells in humans. December 11, 2020 (https://www.medrxiv.org/content/10.1101/2020.12.09.20245175v1. opens in new tab). preprint.

9. Food and Drug Administration. Guidance for industry: emergency use authorization for vaccines to prevent COVID-19. October 2020 (https://www.fda.gov/media/142749/download. opens in new tab).

10. Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med 2020;172:577-582.

11. Haynes BF, Corey L, Fernandes P, et al. Prospects for a safe COVID-19 vaccine. Sci Transl Med 2020;12(568):eabe0948-eabe0948.

12. Cowling BJ, Perera RAPM, Valkenburg SA, et al. Comparative immunogenicity of several enhanced influenza vaccine options for older adults: a randomized, controlled trial. Clin Infect Dis 2020;71:1704-1714.

13. Food and Drug Administration. Shringrix (zoster vaccine recombinant, adjuvanted) product information. 2019 (https://www.fda.gov/vaccines-blood-biologics/vaccines/shingrix. opens in new tab).

服务条款 | 隐私政策 | 联系我们