提示: 手机请竖屏浏览!

危险化学品紧急事件和中毒
Hazardous Chemical Emergencies and Poisonings


Fred M. Henretig ... 其他 • 2019.04.25

危险化学品紧急事件和相关中毒可由各种原因的暴露引起,包括无意中发生的住宅、工业、职业或运输事故,自然灾害,以及旨在造成伤害的危险物质释放1-3。美国每天使用多达10万种工业化学品4,联邦当局估计每年有1万多次可能严重的有害物质释放4,5。此外,许多化合物主要是开发用作军事武器,具有极高毒性6-8。有毒工业化学品和军用化学武器在大量释放后都能够造成大规模伤亡,并可能在化学恐怖袭击8-10、针对性暗杀企图8,11,12或战时对平民的袭击中被故意使用,正如目前叙利亚战争中的悲惨场面13,14

最近,Ciottone在本刊发表了用于应对化学武器袭击,基于中毒症候群的急救医疗系统(EMS)方法8(中毒症候群是临床体征的集合,尤其是一般类型中毒的典型生命体征、精神状态以及眼部、呼吸系统和皮肤表现)。类似方法可用于非故意危险化学品事故中的无数可能的中毒情况。我们综述了急性中毒的毒理学和院内治疗,主要是在涉及危险物质释放的事故及化学恐怖袭击中,几个代表性的化学品类别发生皮肤和吸入暴露后引起的急性中毒(表1)。文中着重讨论了氰化物和有机磷中毒,因为它们也可发生于职业和家庭暴露或者吞服自杀这些我们比较熟悉的情况,并且因为特异性紧急解毒治疗对于获得良好结局至关重要。





作者信息

Fred M. Henretig, M.D., Mark A. Kirk, M.D., and Charles A. McKay, Jr., M.D.
From the Division of Emergency Medicine and Poison Control Center, Children’s Hospital of Philadelphia, and the Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (F.M.H.); the Department of Homeland Security, Washington, DC (M.A.K.); and the Division of Medical Toxicology, Department of Emergency Medicine, University of Connecticut Health Center and Hartford Hospital, Hartford (C.A.M.). Address reprint requests to Dr. Henretig at the Poison Control Center, Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, or at henretig@email.chop.edu.

 

参考文献

1. Kales SN, Christiani DC. Acute chemical emergencies. N Engl J Med 2004;350:800-808.

2. Kirk MA, Deaton ML. Bringing order out of chaos: effective strategies for medical response to mass chemical exposure. Emerg Med Clin North Am 2007;25:527-548.

3. National Toxic Substances Incident Program (NTSIP) biennial report 2013-2014. Atlanta: Department of Health and Human Services, 2014 (https://www.atsdr.cdc.gov/ntsip/docs/ntsip_2013-14_final_report_508.pdf).

4. Tomassoni AJ, French RNE, Walter FG. Toxic industrial chemicals and chemical weapons: exposure, identification, and management by syndrome. Emerg Med Clin North Am 2015;33:13-36.

5. Duncan MA, Orr MF. Evolving with the times, the new National Toxic Substance Incidents Program. J Med Toxicol 2010;6:461-463.

6. U.S. Army Medical Research Institute of Chemical Defense. Medical management of chemical casualties handbook. Arlington, VA: Department of the Army, 2014 (http://www.cs.amedd.army.mil/Portlet.aspx?ID=a0968070-71b0-46c0-a139-9362d1b13265).

7. Suchard JR. Chemical weapons. In: Hoffman RS, Howland MA, Lewin NA, Nelson LS, Goldfrank LR, eds. Goldfrank’s toxicologic emergencies. 10th ed. New York: McGraw-Hill, 2015:1678-1690.

8. Ciottone GR. Toxidrome recognition in chemical-weapons attacks. N Engl J Med 2018;378:1611-1620.

9. Burklow TR, Yu CE, Madsen JM. Industrial chemicals: terrorist weapons of opportunity. Pediatr Ann 2003;32:230-234.

10. Russell D, Simpson J. Emergency planning and preparedness for the deliberate release of toxic industrial chemicals. Clin Toxicol (Phila) 2010;48:171-176.

11. Paddock RC, Sang-Hun C. Use of nerve agent in Kim Jong-nam killing is condemned by Malaysia. New York Times. March 2, 2017 (https://www.nytimes.com/2017/03/02/world/asia/kim-jong-nam-malaysia.html).

12. Pérez-Peña R, Barry E. U.K. charges 2 men in Novichok poisoning, saying they’re Russian agents. New York Times. September 5, 2018 (https://www.nytimes.com/2018/09/05/world/europe/russia-uk-novichok-skripal.html?action=click&module=RelatedCoverage&pgtype=Article&region=Footer).

13. Sahloul MZ, Monla-Hassan J, Sankari A, et al. War is the enemy of health: pulmonary, critical care, and sleep medicine in war-torn Syria. Ann Am Thorac Soc 2016;13:147-155.

14. John H, van der Schans MJ, Koller M, et al. Fatal sarin poisoning in Syria 2013: forensic verification within an international laboratory network. Forensic Toxicol 2018;36:61-71.

15. Okumura T, Takasu N, Ishimatsu S, et al. Report on 640 victims of the Tokyo subway sarin attack. Ann Emerg Med 1996;28:129-135.

16. Hick JL, Penn P, Hanfling D, Lappe MA, O’Laughlin D, Burstein JL. Establishing and training health care facility decontamination teams. Ann Emerg Med 2003;42:381-390.

17. Larson TC, Orr MF, Auf der Heide E, Wu J, Mukhopadhyay S, Horton DK. Threat of secondary chemical contamination of emergency departments and personnel: an uncommon but recurrent problem. Disaster Med Public Health Prep 2016;10:199-202.

18. Cibulsky SM, Kirk MA, Ignacio JS, Leary AD, Schwartz MD. Patient decontamination in a mass chemical exposure incident: national planning guidance for communities. Washington, DC: Department of Homeland Security, Department of Health and Human Services, 2014 (https://www.dhs.gov/sites/default/files/publications/Patient%20Decon%20National%20Planning%20Guidance_Final_December%202014.pdf).

19. Leary AD, Schwartz MD, Kirk MA, Ignacio JS, Wencil EB, Cibulsky SM. Evidence-based patient decontamination: an integral component of mass exposure chemical incident planning and response. Disaster Med Public Health Prep 2014;8:260-266.

20. Holland MG, Cawthon D. Personal protective equipment and decontamination of adults and children. Emerg Med Clin North Am 2015;33:51-68.

21. Chilcott RP, Amlôt R. Primary Response Incident Scene Management (PRISM) guidance for chemical incidents. Vol. 1. Strategic guidance for mass casualty disrobe and decontamination. Washington, DC: Department of Health and Human Services, 2015 (https://www.medicalcountermeasures.gov/barda/cbrn/prism/).

22. Chilcott RP, Larner J, Durrant A, et al. Evaluation of U.S. federal guidelines (Primary Response Incident Scene Management [PRISM]) for mass decontamination of casualties during the initial operational response to a chemical incident. Ann Emerg Med 2018 August 23 (Epub ahead of print).

23. Sharma A. Ophthalmic principles. In: Hoffman RS, Howland MA, Lewin NA, Nelson LS, Goldfrank LR, eds. Goldfrank’s toxicologic emergencies. 10th ed. New York: McGraw-Hill, 2015:324-330.

24. Baradaran-Rafii A, Eslani M, Haq Z, Shirzadeh E, Huvard MJ, Djalilian AR. Current and upcoming therapies for ocular surface chemical injuries. Ocul Surf 2017;15:48-64.

25. McCormick LC, Tajeu GS, Klapow J. Mental health consequences of chemical and radiologic emergencies: a systematic review. Emerg Med Clin North Am 2015;33:197-211.

26. McKay CA. Risk assessment and risk communication. In: Hoffman RS, Howland MA, Lewin NA, Nelson LS, Goldfrank LR, eds. Goldfrank’s toxicologic emergencies. 10th ed. New York: McGraw-Hill, 2015:1665-1669.

27. Teran-Maciver M, Larson K. Implications of chemical biological terrorist events for children and pregnant women. MCN Am J Matern Child Nurs 2008;33:224-232.

28. Chen J, Wilkinson D, Richardson RB, Waruszynski B. Issues, considerations and recommendations on emergency preparedness for vulnerable population groups. Radiat Prot Dosimetry 2009;134:132-135.

29. Henretig FM, Cieslak TJ, Eitzen EM Jr. Biological and chemical terrorism. J Pediatr 2002;141:311-326.

30. Disaster Preparedness Advisory Council. Medical countermeasures for children in public health emergencies, disasters, or terrorism. Pediatrics 2016;137(2):e20154273-e20154273.

31. Mofenson HC, Greensher J. The unknown poison. Pediatrics 1974;54:336-342.

32. Holstege CP, Borek HA. Toxidromes. Crit Care Clin 2012;28:479-498.

33. Report on the toxic chemical syndrome: definitions and nomenclature workshop, May 8-9, 2012. Washington, DC: Department of Homeland Security, 2012 (https://chemm.nlm.nih.gov/Report_from_Toxic_Syndrome_Workshop_final_with_ACMT_edits_cover.pdf).

34. Chemical Hazards Emergency Medical Management. CHEMM. Washington, DC: Department of Health and Human Services, 2017 (https://chemm.nlm.nih.gov).

35. Kleinschmidt KC, Delaney KA. Biochemical and metabolic principles. In: Hoffman RS, Howland MA, Lewin NA, Nelson LS, Goldfrank LR, eds. Goldfrank’s toxicologic emergencies, 10th ed. New York: McGraw-Hill, 2015:155-171.

36. Eaton DL, Gilbert SG. Principles of toxicology. In: Klaassen CD, ed. Casarett & Doull’s toxicology: the basic science of poisons. New York: McGraw-Hill, 2013:13-48.

37. Nelson LS, Odujebe OA. Simple asphyxiants and pulmonary irritants. In: Hoffman RS, Howland MA, Lewin NA, Nelson LS, Goldfrank LR, eds. Goldfrank’s toxicologic emergencies, 10th ed. New York: McGraw-Hill, 2015:1567-1580.

38. McKay CA Jr. Toxin-induced respiratory distress. Emerg Med Clin North Am 2014;32:127-147.

39. Mishra PK, Samarth RM, Pathak N, Jain SK, Banerjee S, Maudar KK. Bhopal gas tragedy: review of clinical and experimental findings after 25 years. Int J Occup Med Environ Health 2009;22:193-202.

40. Mackie E, Svendsen E, Grant S, Michels JE, Richardson WH. Management of chlorine gas-related injuries from the Graniteville, South Carolina, train derailment. Disaster Med Public Health Prep 2014;8:411-416.

41. Chlorine gas toxicity from mixture of bleach with other cleaning products — California. MMWR Morb Mortal Wkly Rep 1991;40:619-621, 627-629.

42. Vajner JE III, Lung D. Case files of the University of California San Francisco Medical Toxicology Fellowship: acute chlorine gas inhalation and the utility of nebulized sodium bicarbonate. J Med Toxicol 2013;9:259-265.

43. Grainge C, Rice P. Management of phosgene-induced acute lung injury. Clin Toxicol (Phila) 2010;48:497-508.

44. Hardison LS Jr, Wright E, Pizon AF. Phosgene exposure: a case of accidental industrial exposure. J Med Toxicol 2014;10:51-56.

45. Summerhill EM, Hoyle GW, Jordt S-E, et al. An official American Thoracic Society Workshop Report: chemical inhalational disasters: biology of lung injury, development of novel therapeutics, and medical preparedness. Ann Am Thor Soc 2017;14:1060-1072.

46. Alberts WM, do Pico GA. Reactive airways dysfunction syndrome. Chest 1996;109:1618-1626.

47. Vandenplas O, Wiszniewska M, Raulf M, et al. EAACI position paper: irritant-induced asthma. Allergy 2014;69:1141-1153.

48. Hurst CG, Petrali JP, Barillo DJ, et al. Vesicants. In: Tourinsky SD, ed. Textbook of military medicine. Washington, DC: Department of the Army, 2008:259-309 (https://permanent.access.gpo.gov/websites/ke.army.mil/bordeninstitute/published_volumes/chemwarfare/CH8_Pgs259-310.pdf).

49. Weibrecht K, Rhyee S, Manuell ME, Longo C, Boyer EW, Brush E. Sulfur mustard exposure presenting to a community emergency department. Ann Emerg Med 2012;59:70-74.

50. Greenberg MI, Sexton KJ, Vearrier D. Sea-dumped chemical weapons: environmental risk, occupational hazard. Clin Toxicol (Phila) 2016;54:79-91.

51. Ahmad S, Ahmad A. Emerging targets for treating sulfur mustard-induced injuries. Ann N Y Acad Sci 2016;1374:123-131.

52. Tewari-Singh N, Agarwal R. Mustard vesicating agent-induced toxicity in the skin tissue and silibinin as a potential countermeasure. Ann N Y Acad Sci 2016;1374:184-192.

53. Naraghi ZS, Mansouri P, Mortazavi M. A clinicopathological study on acute cutaneous lesions induced by sulfur mustard gas (yperite). Eur J Dermatol 2005;15:140-145.

54. White CW, Rancourt RC, Veress LA. Sulfur mustard inhalation: mechanisms of injury, alteration of coagulation, and fibrinolytic therapy. Ann N Y Acad Sci 2016;1378:87-95.

55. Mukaida K, Hattori N, Iwamoto H, et al. Mustard gas exposure and mortality among retired workers at a poisonous gas factory in Japan: a 57-year follow-up cohort study. Occup Environ Med 2017;74:321-327.

56. Rajavi Z, Safi S, Javadi MA, et al. Clinical practice guidelines for prevention, diagnosis and management of early and delayed-onset ocular injuries due to mustard gas exposure. J Ophthalmic Vis Res 2017;12:65-80.

57. Borron SW, Bebarta VS. Asphyxiants. Emerg Med Clin North Am 2015;33:89-115.

58. Holstege CP, Kirk MA. Cyanide and hydrogen sulfide. In: Hoffman RS, Howland MA, Lewin NA, Nelson LS, Goldfrank LR, eds. Goldfrank’s toxicologic emergencies. 10th ed. New York: McGraw-Hill, 2015:1602-1611.

59. Hampson NB. U.S. mortality due to carbon monoxide poisoning, 1999-2014: accidental and intentional deaths. Ann Am Thorac Soc 2016;13:1768-1774.

60. Ruder JB, Ward JG, Taylor S, Giles K, Higgins T, Haan JM. Hydrogen sulfide suicide: a new trend and threat to healthcare providers. J Burn Care Res 2015;36(2):e23-25.

61. Klein-Schwartz W, Gorman RL, Oderda GM, Massaro BP, Kurt TL, Garriott JC. Three fatal sodium azide poisonings. Med Toxicol Adverse Drug Exp 1989;4:219-227.

62. Garlich FM, Alsop JA, Anderson DL, et al. Poisoning and suicide by cyanide jewelry cleaner in the U.S. Hmong community: a case series. Clin Toxicol (Phila) 2012;50:136-140.

63. Weaver LK. Carbon monoxide poisoning. N Engl J Med 2009;360:1217-1225.

64. Hampson NB, Piantadosi CA, Thom SR, Weaver LK. Practice recommendations in the diagnosis, management, and prevention of carbon monoxide poisoning. Am J Respir Crit Care Med 2012;186:1095-1101.

65. Gabbay DS, De Roos F, Perrone J. Twenty-foot fall averts fatality from massive hydrogen sulfide exposure. J Emerg Med 2001;20:141-144.

66. Geller RJ, Barthold C, Saiers JA, Hall AH. Pediatric cyanide poisoning: causes, manifestations, management, and unmet needs. Pediatrics 2006;118:2146-2158.

67. Sang-A-Gad P, Guharat S, Wananukul W. A mass cyanide poisoning from pickling bamboo shoots. Clin Toxicol (Phila) 2011;49:834-839.

68. Baud FJ, Barriot P, Toffis V, et al. Elevated blood cyanide concentrations in victims of smoke inhalation. N Engl J Med 1991;325:1761-1766.

69. Curry SC. Cyanide hydrogen cyanide, inorganic cyanide salts, and nitriles. In: Brent J, Wallace KL, Burkhart KK, Phillips SD, Donovan WJ, eds. Critical care toxicology: diagnosis and management of the critically poisoned patient. Philadelphia: Mosby, 2005:987-997.

70. Parker-Cote JL, Rizer J, Vakkalanka JP, Rege SV, Holstege CP. Challenges in the diagnosis of acute cyanide poisoning. Clin Toxicol (Phila) 2018;56:609-617.

71. Weaver LK, Hopkins RO, Chan KJ, et al. Hyperbaric oxygen for acute carbon monoxide poisoning. N Engl J Med 2002;347:1057-1067.

72. Borron SW, Baud FJ. Antidotes for acute cyanide poisoning. Curr Pharm Biotechnol 2012;13:1940-1948.

73. Borron SW, Baud FJ, Barriot P, Imbert M, Bismuth C. Prospective study of hydroxocobalamin for acute cyanide poisoning in smoke inhalation. Ann Emerg Med 2007;49:794-801.

74. Curry SC, Connor DA, Raschke RA. Effect of the cyanide antidote hydroxocobalamin on commonly ordered serum chemistry studies. Ann Emerg Med 1994;24:65-67.

75. Sutter ME, Clarke ME, Cobb J, et al. Blood leak alarm interference by hydoxocobalamin is hemodialysis machine dependent. Clin Toxicol (Phila) 2012;50:892-895.

76. Pace R, Bon Homme M, Hoffman RS, Lugassy D. Effects of hydroxocobalamin on carboxyhemoglobin measured under physiologic and pathologic conditions. Clin Toxicol (Phila) 2014;52:647-650.

77. Mintegi S, Clerigue N, Tipo V, et al. Pediatric cyanide poisoning by fire smoke inhalation: a European expert consensus. Pediatr Emerg Care 2013;29:1234-1240.

78. Hall AH, Rumack BH. Hydroxycobalamin/sodium thiosulfate as a cyanide antidote. J Emerg Med 1987;5:115-121.

79. Bebarta VS, Pitotti RL, Dixon P, Lairet JR, Bush A, Tanen DA. Hydroxocobalamin versus sodium thiosulfate for the treatment of acute cyanide toxicity in a swine (Sus scrofa) model. Ann Emerg Med 2012;59:532-539.

80. Zakharov S, Vaneckova M, Seidl Z, et al. Successful use of hydroxocobalamin and sodium thiosulfate in acute cyanide poisoning: a case report with follow-up. Basic Clin Pharmacol Toxicol 2015;117:209-212.

81. Bebarta VS, Brittain M, Chan A, et al. Sodium nitrite and sodium thiosulfate are effective against acute cyanide poisoning when administered by intramuscular injection. Ann Emerg Med 2017;69(6):718-725.e4.

82. Brenner M, Azer SM, Oh KJ, et al. Oral glycine and sodium thiosulfate for lethal cyanide ingestion. J Clin Toxicol 2017;7:355-355.

83. Bebarta VS, Garrett N, Brenner M, et al. Efficacy of intravenous cobinamide versus hydroxocobalamin or saline for treatment of severe hydrogen sulfide toxicity in a swine model. Acad Emerg Med 2017;24:1088-1098.

84. King AM, Aaron CK. Organophosphate and carbamate poisoning. Emerg Med Clin North Am 2015;33:133-151.

85. Sidell FR, Newmark J, McDonough JH. Nerve agents. In: Tourinsky SD, ed. Textbook of military medicine. Washington, DC: Department of the Army, 2008:155-220 (https://permanent.access.gpo.gov/websites/ke.army.mil/bordeninstitute/published_volumes/chemwarfare/Ch5_pg155-220.pdf).

86. Eddleston M. Insecticides: organic phosphorus compounds and carbamates. In: Hoffman RS, Howland MA, Lewin NA, Nelson LS, Goldfrank LR, eds. Goldfrank’s toxicologic emergencies. 10th ed. New York: McGraw-Hill, 2015:1409-1424.

87. Wiener SW, Hoffman RS. Nerve agents: a comprehensive review. J Intensive Care Med 2004;19:22-37.

88. Worek F, Wille T, Koller M, Thiermann H. Toxicology of organophosphorus compounds in view of an increasing terrorist threat. Arch Toxicol 2016;90:2131-2145.

89. Eddleston M, Chowdhury FR. Pharmacological treatment of organophosphorus insecticide poisoning: the old and the (possible) new. Br J Clin Pharmacol 2016;81:462-470.

90. Henretig FM, Mechem C, Jew R. Potential use of autoinjector-packaged antidotes for treatment of pediatric nerve agent toxicity. Ann Emerg Med 2002;40:405-408.

91. Abedin MJ, Sayeed AA, Basher A, Maude RJ, Hoque G, Faiz MA. Open-label randomized clinical trial of atropine bolus injection versus incremental boluses plus infusion for organophosphate poisoning in Bangladesh. J Med Toxicol 2012;8:108-117.

92. Eddleston M, Eyer P, Worek F, et al. Pralidoxime in acute organophosphorus insecticide poisoning — a randomised controlled trial. PLoS Med 2009;6(6):e1000104-e1000104.

93. Schwartz MD, Sutter ME, Eisnor D, Kirk MA. Contingency medical countermeasures for mass nerve-agent exposure: use of pharmaceutical alternatives to community stockpiled antidotes. Disaster Med Public Health Prep 2018 October 15 (Epub ahead of print).

94. Office of the Assistant Secretary for Preparedness and Response. Contingency medical countermeasures for treating nerve agent poisoning. Washington, DC: Department of Health and Human Services, June 27, 2018 (http://nwrhcc.org/wp-content/uploads/2018/07/Nerve-Agent-MCM-Contingency-Guidance-27-June-2018.pdf).

95. Myhrer T, Aas P. Choice of approaches in developing novel medical countermeasures for nerve agent poisoning. Neurotoxicology 2014;44:27-38.

96. Eisenkraft A, Falk A. The possible role of intravenous lipid emulsion in the treatment of chemical warfare agent poisoning. Toxicol Rep 2016;3:202-210.

97. Moore BL, Geller RJ, Clark C. Hospital preparedness for chemical and radiological disasters. Emerg Med Clin North Am 2015;33:37-49.

98. Okumura T, Suzuki K, Fukuda A, et al. The Tokyo subway sarin attack: disaster management, Part 2: hospital response. Acad Emerg Med 1998;5:618-624.

99. Auf der Heide E. The importance of evidence-based disaster planning. Ann Emerg Med 2006;47:34-49.

100. Kirk M, Iddins CJ. Resources for toxicologic and radiologic information and assistance. Emerg Med Clin North Am 2015;33:69-88.

101. Schwartz M, Gorman SE. Medical toxicology and public health — update on research and activities at the Centers for Disease Control and Prevention, and the Agency for Toxic Substances and Disease Registry. J Med Toxicol 2007;3:139-140.

102. World Health Organization. Manual for the public health management of chemical incidents. 2009 (http://apps.who.int/iris/bitstream/handle/10665/44127/9789241598149_eng.pdf;jsessionid=BDCB644B6EC9CA654967B0485E952D05?sequence=1).

103. Jett DA. The NIH countermeasures against chemical threats program: overview and special challenges. Ann N Y Acad Sci 2016;1374:5-9.

104. Centers for Disease Control and Prevention. Emergency preparedness and response: chemical. 2017 (https://emergency.cdc.gov/lrn/chemical.asp).

105. Madsen JM, Greenberg MI. Preparedness for the evaluation and management of mass casualty incidents involving anticholinesterase compounds: a survey of emergency department directors in the 12 largest cities in the United States. Am J Disaster Med 2010;5:333-351.

106. Dart RC, Goldfrank LR, Erstad BL, et al. Expert consensus guidelines for stocking of antidotes in hospitals that provide emergency care. Ann Emerg Med 2018;71(3):314-325.e1.

服务条款 | 隐私政策 | 联系我们