提示: 手机请竖屏浏览!

研究多种疗法、多种疾病或两者的母方案
Master Protocols to Study Multiple Therapies, Multiple Diseases, or Both


Janet Woodcock ... 其他 • 2017.07.06

我们用高质量的证据来指导医疗实践。产生高质量证据的标准方法是开展一系列的临床试验,每项试验研究一种或两种干预措施对某单一疾病的效果。该标准方法已变得越来越昂贵,在实施过程中带来的挑战性也越来越大。故许多重要的临床问题未能得到解答。评估靶向治疗的“精准医学”试验在招募某些疾病的罕见基因亚型患者方面面临挑战。开展基于机制的试验也得到越来越多的关注,其纳入标准有别于传统的疾病定义。它们的共同点是需要在更短的时间内更高效地回答更多的问题。

应对这一需求的方法学创新涉及在一个总体试验框架下联合评价多种治疗对多种患者或多种疾病的效果1-4。这种创新的成果被称作母方案(master protocol),是一个被设计为解决多个问题的整体性试验方案。母方案可以设计为在多种疾病中评估一种或多种干预措施,也可以在单一疾病(根据当前的疾病分类)中评估多种干预措施,每种干预措施靶向一种疾病亚型或一个由生物标志物定义的特定人群。在这个广泛性的母方案定义之下,包含了三种不同的试验方案:伞式、篮式和平台试验(表1、图1和图2)。这三者都是由一系列试验或子研究所组成的。这些试验或子研究共享关键设计和实施要素,因此能够发挥比单独设计和独立实施时更好的协调作用。





作者信息

Janet Woodcock, M.D., and Lisa M. LaVange, Ph.D.
From the Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD. Address reprint requests to Dr. LaVange at the Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Blvd., Silver Spring, MD 20993, or at lisa.lavange@fda.hhs.gov

 

参考文献

1. Clinical trial designs for studying targeted therapies. ASCO Daily News. May 31, 2015 (https://am.asco.org/clinical-trial-designs-studying-targeted-therapies).

2. Berry DA. The brave new world of clinical cancer research: adaptive biomarker-driven trials integrating clinical practice with clinical research. Mol Oncol 2015;9:951-959

3. Catenacci DVT. Next-generation clinical trials: novel strategies to address the challenge of tumor molecular heterogeneity. Mol Oncol 2015;9:967-996

4. Redig AJ, Jänne PA. Basket trials and the evolution of clinical trial design in an era of genomic medicine. J Clin Oncol 2015;33:975-977

5. Fridlyand J, Simon RM, Walrath JC, et al. Considerations for the successful co-development of targeted cancer therapies and companion diagnostics. Nat Rev Drug Discov 2013;12:743-755

6. Heinrich MC, Joensuu H, Demetri GD, et al. Phase II, open-label study evaluating the activity of imatinib in treating life-threatening malignancies known to be associated with imatinib-sensitive tyrosine kinases. Clin Cancer Res 2008;14:2717-2725

7. Hyman DM, Puzanov I, Subbiah V, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med 2015;373:726-736

8. NCI-MATCH Trial (Molecular Analysis for Therapy Choice). Bethesda, MD: National Cancer Institute (http://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/nci-match).

9. Kim ES, Herbst RS, Wistuba II, et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov 2011;1:44-53

10. Barker AD, Sigman CC, Kelloff GJ, Hylton NM, Berry DA, Esserman LJ. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther 2009;86:97-100

11. Esserman LJ, Woodcock J. Accelerating identification and regulatory approval of investigational cancer drugs. JAMA 2011;306:2608-2609

12. Berry SM, Connor JT, Lewis RJ. The platform trial: an efficient strategy for evaluating multiple treatments. JAMA 2015;313:1619-1620

13. Herbst R, Rubin E, LaVange L, et al. Design of a disease-specific master protocol. Presented at the Friends of Cancer Research/Brookings Conference on Clinical Cancer Research, Washington, DC, November 14, 2012.

14. Herbst RS, Gandara DR, Hirsch FR, et al. Lung Master Protocol (Lung-MAP) — a biomarker-driven protocol for accelerating development of therapies for squamous cell lung cancer: SWOG S1400. Clin Cancer Res 2015;21:1514-1524

15. Steuer CE, Papadimitrakopoulou V, Herbst RS, et al. Innovative clinical trials: the LUNG-MAP study. Clin Pharmacol Ther 2015;97:488-491

16. Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 2014;384:164-172

17. Park JW, Liu MC, Yee D, et al. Adaptive randomization of neratinib in early breast cancer. N Engl J Med 2016;375:11-22

18. Rugo HS, Olopade OI, DeMichele A, et al. Adaptive randomization of veliparib–carboplatin treatment in breast cancer. N Engl J Med 2016;375:23-34

19. Duke Margolis Center for Health Policy. Pioneering statistical approaches to accelerate drug development through adaptive trial designs. June 30, 2016 (https://healthpolicy.duke.edu/publications/pioneering-statistical-approaches-accelerate-drug-development-through-adaptive-trial).

20. ullard A. Multicompany trials adapt to disciplines beyond cancer. Nat Med 2014;20:3-3

21. Studies in progress. Antibacterial Leadership Resistance Group (http://arlg.org/studies-in-progress).

22. Antibiotic platform design. Austin, TX: Berry Consultants (http://www.berryconsultants.com/antibiotic-platform-design/).

23. Dodd LE, Proschan MA, Neuhaus J, et al. Design of a randomized controlled trial for Ebola virus disease medical countermeasures: PREVAIL II, the Ebola MCM Study. J Infect Dis 2016;213:1906-1913

24. The PREVAIL II Writing Group. A randomized, controlled trial of ZMapp for Ebola virus infection. N Engl J Med 2016;375:1448-1456

25. Bateman RJ, Xiong C, Benzinger TLS, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012;367:795-804

26. Dominantly Inherited Alzheimer Network Trial: an opportunity to prevent dementia (DIAN TU). Bethesda, MD: National Institute on Aging (https://www.nia.nih.gov/alzheimers/clinical-trials/dominantly-inherited-alzheimer-network-trial-opportunity-prevent-dementia).

27. Drazen JM, Lenfant C, Hurd SS. Acorns and inhalers: the Asthma Clinical Research Network. J Allergy Clin Immunol 2007;119:28-29

28. Davis SM, Koch GG, Davis CE, LaVange LM. Statistical approaches to effectiveness measurement and outcome-driven re-randomizations in the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) studies. Schizophr Bull 2003;29:73-80

29. Lieberman JA, Stroup TS, McEvoy JP, et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005;353:1209-1223

30. LaVange LM, Sridhara R. Statistical considerations in designing master protocols. Presented at the Innovations in Breast Cancer Drug Development — Next Generation Oncology Trials, Breast Cancer Workshop, Bethesda, MD, October 21, 2014 (http://wayback.archive-it.org/7993/20161023010547/http://www.fda.gov/downloads/Drugs/NewsEvents/UCM423368.pdf).

31. Sridhara R, He K, Nie L, Shen Y-L, Tang S. Current statistical challenges in oncology clinical trials in the era of targeted therapy. Stat Biopharm Res 2015;7:348-356

32. Saville BR, Connor JT, Ayers GD, Alvarez J. The utility of Bayesian predictive probabilities for interim monitoring of clinical trials. Clin Trials 2014;11:485-493

33. Berry SM, Broglio KR, Groshen S, Berry DA. Bayesian hierarchical modeling of patient subpopulations: efficient designs of Phase II oncology clinical trials. Clin Trials 2013;10:720-734

34. Saville BR, Berry SM. Efficiencies of platform clinical trials: a vision of the future. Clin Trials 2016;13:358-366

35. Hong F, Simon R. Run-in phase III trial design with pharmacodynamics predictive biomarkers. J Natl Cancer Inst 2013;105:1628-1633

36. Hey SP, Kimmelman J. Are outcome-adaptive allocation trials ethical? Clin Trials 2015;12:102-106

37. Berry D, Esserman L. Adaptive randomization of neratinib in early breast cancer N Engl J Med 2016;375:1592-1593

38. Hunter DJ, D’Agostino RB Sr. Let’s not put all our eggs in one basket. N Engl J Med 2015;373:691-693

服务条款 | 隐私政策 | 联系我们