提示: 手机请竖屏浏览!

慢性肾疾病的营养管理
Nutritional Management of Chronic Kidney Disease


Kamyar Kalantar-Zadeh ... 糖尿病 其他 • 2017.11.02
相关阅读
• 与慢性肾脏疾病相关的矿物质和骨骼疾病患者的评估与治疗

确证肾脏结构性或功能性损伤达3个月或3个月以上者即定义为慢性肾疾病。通常来说,慢性肾疾病会持续进展且无法逆转,并影响多种代谢途径1。蛋白质与能量稳态发生改变,蛋白质分解代谢出现异常,酸碱紊乱,激素失调也接踵而至。正常成长和发育也可能受到阻碍,特别是儿童2。慢性肾疾病按期分类,不同时期症状各异(见补充附录插框S1;补充附录与本文全文可在NEJM.org获取)。然而,随着慢性肾疾病的进展,从饮食及体内蛋白质分解代谢积累的含氮产物可能会扭曲味觉和嗅觉,并导致食欲不振2。由于尿毒症影响微生物组并破坏肠上皮细胞3,胃肠道营养吸收终将出现异常。随着肾衰竭的进展,肌肉与脂肪消耗也可能发生,并因合并症及身体衰弱而加剧。这在老年患者中尤其常见,他们在慢性肾疾病患者中占很大比例。因此,营养状况通常会出现紊乱,蛋白质能量消耗也时常发生,从而要求在这一人群中进行饮食调整。不过,除了饮食调整外,营养治疗还可能有助于控制尿毒症以及其他并发症,如电解质及酸碱失衡、水盐潴留、矿物质及骨骼疾病和较差的身体状况。事实上,根据患者的偏好,饮食干预还可用于尿毒症的保守治疗,或作为延缓或避免透析治疗的手段。尽管尚未明确证明,但饮食干预有可能延缓疾病的进展,无论是否同时进行尿毒症控制。鉴于全世界约有10%的成年人患有慢性肾疾病4,再考虑到维持性透析治疗和肾移植的超高费用及负担,饮食干预可能会被更多人选为慢性肾疾病的管理策略。本综述对成年人慢性肾疾病营养管理的几个方面进行了总结与讨论。





作者信息

Kamyar Kalantar-Zadeh, M.D., M.P.H., Ph.D., and Denis Fouque, M.D., Ph.D.
From the Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California, Irvine, School of Medicine, Orange, the Long Beach Veterans Affairs Healthcare System, Long Beach, the Department of Epidemiology, University of California, Los Angeles (UCLA), and the Los Angeles Biomedical Research Institute at Harbor–UCLA, Torrance — all in California (K.K.-Z.); and the Department of Nephrology, Université Claude Bernard Lyon, Centre Hospitalier Lyon Sud, Cardiometabolism and Nutrition (CarMeN), Lyon, France (D.F.). Address reprint requests to Dr. Kalantar-Zadeh at the Division of Nephrology and Hypertension, University of California, Irvine, School of Medicine, Orange, CA 92868, or at kkz@uci.edu.

 

参考文献

1. Levey AS, de Jong PE, Coresh J, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int 2011;80:17-28

2. Armstrong JE, Laing DG, Wilkes FJ, Kainer G. Smell and taste function in children with chronic kidney disease. Pediatr Nephrol 2010;25:1497-1504

3. Vaziri ND, Yuan J, Norris K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am J Nephrol 2013;37:1-6

4. Bello AK, Levin A, Tonelli M, et al. Assessment of global kidney health care status. JAMA 2017;317:1864-1881

5. Hostetter TH, Meyer TW, Rennke HG, Brenner BM. Chronic effects of dietary protein in the rat with intact and reduced renal mass. Kidney Int 1986;30:509-517

6. Tovar-Palacio C, Tovar AR, Torres N, et al. Proinflammatory gene expression and renal lipogenesis are modulated by dietary protein content in obese Zucker fa/fa rats. Am J Physiol Renal Physiol 2011;300:F263-F271

7. Brenner BM, Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA. The role of glomerular hyperfiltration in the initiation and progression of diabetic nephropathy. Acta Endocrinol Suppl (Copenh) 1981;242:7-10

8. Wrone EM, Carnethon MR, Palaniappan L, Fortmann SP. Association of dietary protein intake and microalbuminuria in healthy adults: Third National Health and Nutrition Examination Survey. Am J Kidney Dis 2003;41:580-587

9. Sällström J, Carlström M, Olerud J, et al. High-protein-induced glomerular hyperfiltration is independent of the tubuloglomerular feedback mechanism and nitric oxide synthases. Am J Physiol Regul Integr Comp Physiol 2010;299:R1263-R1268

10. Cirillo M, Lombardi C, Chiricone D, De Santo NG, Zanchetti A, Bilancio G. Protein intake and kidney function in the middle-age population: contrast between cross-sectional and longitudinal data. Nephrol Dial Transplant 2014;29:1733-1740

11. Ruilope LM, Casal MC, Praga M, et al. Additive antiproteinuric effect of converting enzyme inhibition and a low protein intake. J Am Soc Nephrol 1992;3:1307-1311

12. Klahr S, Levey AS, Beck GJ, et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. N Engl J Med 1994;330:877-884

13. Levey AS, Greene T, Beck GJ, et al. Dietary protein restriction and the progression of chronic renal disease: what have all of the results of the MDRD study shown? J Am Soc Nephrol 1999;10:2426-2439

14. Kasiske BL, Lakatua JD, Ma JZ, Louis TA. A meta-analysis of the effects of dietary protein restriction on the rate of decline in renal function. Am J Kidney Dis 1998;31:954-961

15. Haring B, Selvin E, Liang M, et al. Dietary protein sources and risk for incident chronic kidney disease: results from the Atherosclerosis Risk in Communities (ARIC) Study. J Ren Nutr 2017;27:233-242

16. Kaysen GA, Gambertoglio J, Jimenez I, Jones H, Hutchison FN. Effect of dietary protein intake on albumin homeostasis in nephrotic patients. Kidney Int 1986;29:572-577

17. Maroni BJ, Staffeld C, Young VR, Manatunga A, Tom K. Mechanisms permitting nephrotic patients to achieve nitrogen equilibrium with a protein-restricted diet. J Clin Invest 1997;99:2479-2487

18. D’Amico G, Gentile MG, Manna G, et al. Effect of vegetarian soy diet on hyperlipidaemia in nephrotic syndrome. Lancet 1992;339:1131-1134

19. Weiner ID, Mitch WE, Sands JM. Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin J Am Soc Nephrol 2015;10:1444-1458

20. Protein and amino acids. Washington, DC: National Academy of Sciences, Institute of Medicine, Food and Nutrition Board, 2005.

21. Berg AH, Drechsler C, Wenger J, et al. Carbamylation of serum albumin as a risk factor for mortality in patients with kidney failure. Sci Transl Med 2013;5:175ra29-175ra29

22. Patel KP, Luo FJ, Plummer NS, Hostetter TH, Meyer TW. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin J Am Soc Nephrol 2012;7:982-988

23. Walser M, Hill S. Can renal replacement be deferred by a supplemented very low protein diet? J Am Soc Nephrol 1999;10:110-116

24. Brunori G, Viola BF, Parrinello G, et al. Efficacy and safety of a very-low-protein diet when postponing dialysis in the elderly: a prospective randomized multicenter controlled study. Am J Kidney Dis 2007;49:569-580

25. Garneata L, Stancu A, Dragomir D, Stefan G, Mircescu G. Ketoanalogue-supplemented vegetarian very low-protein diet and CKD progression. J Am Soc Nephrol 2016;27:2164-2176

26. Ko GJ, Obi Y, Tortorici AR, Kalantar-Zadeh K. Dietary protein intake and chronic kidney disease. Curr Opin Clin Nutr Metab Care 2017;20:77-85

27. Kovesdy CP, Kopple JD, Kalantar-Zadeh K. Management of protein-energy wasting in non-dialysis-dependent chronic kidney disease: reconciling low protein intake with nutritional therapy. Am J Clin Nutr 2013;97:1163-1177

28. Wu HL, Sung JM, Kao MD, Wang MC, Tseng CC, Chen ST. Nonprotein calorie supplement improves adherence to low-protein diet and exerts beneficial responses on renal function in chronic kidney disease. J Ren Nutr 2013;23:271-276

29. Paes-Barreto JG, Silva MI, Qureshi AR, et al. Can renal nutrition education improve adherence to a low-protein diet in patients with stages 3 to 5 chronic kidney disease? J Ren Nutr 2013;23:164-171

30. Mente A, O’Donnell MJ, Rangarajan S, et al. Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med 2014;371:601-611

31. He FJ, Li J, Macgregor GA. Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst Rev 2013::CD004937-CD004937

32. O’Donnell M, Mente A, Yusuf S. Sodium intake and cardiovascular health. Circ Res 2015;116:1046-1057

33. Kwakernaak AJ, Krikken JA, Binnenmars SH, et al. Effects of sodium restriction and hydrochlorothiazide on RAAS blockade efficacy in diabetic nephropathy: a randomised clinical trial. Lancet Diabetes Endocrinol 2014;2:385-395

34. McMahon EJ, Bauer JD, Hawley CM, et al. A randomized trial of dietary sodium restriction in CKD. J Am Soc Nephrol 2013;24:2096-2103

35. Smyth A, Dunkler D, Gao P, et al. The relationship between estimated sodium and potassium excretion and subsequent renal outcomes. Kidney Int 2014;86:1205-1212

36. He J, Mills KT, Appel LJ, et al. Urinary sodium and potassium excretion and CKD progression. J Am Soc Nephrol 2016;27:1202-1212

37. Mills KT, Chen J, Yang W, et al. Sodium excretion and the risk of cardiovascular disease in patients with chronic kidney disease. JAMA 2016;315:2200-2210

38. Stolarz-Skrzypek K, Kuznetsova T, Thijs L, et al. Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion. JAMA 2011;305:1777-1785

39. Kovesdy CP, Lott EH, Lu JL, et al. Hyponatremia, hypernatremia, and mortality in patients with chronic kidney disease with and without congestive heart failure. Circulation 2012;125:677-684

40. Fouque D, Kalantar-Zadeh K, Kopple J, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int 2008;73:391-398

41. Sontrop JM, Dixon SN, Garg AX, et al. Association between water intake, chronic kidney disease, and cardiovascular disease: a cross-sectional analysis of NHANES data. Am J Nephrol 2013;37:434-442

42. Palmer BF, Clegg DJ. Achieving the benefits of a high-potassium, paleolithic diet, without the toxicity. Mayo Clin Proc 2016;91:496-508

43. Araki S, Haneda M, Koya D, et al. Urinary potassium excretion and renal and cardiovascular complications in patients with type 2 diabetes and normal renal function. Clin J Am Soc Nephrol 2015;10:2152-2158

44. Water, potassium, sodium, chloride, and sulfate. Washington, DC: National Academy of Sciences, Institute of Medicine, Food and Nutrition Board, 2004.

45. Noori N, Kalantar-Zadeh K, Kovesdy CP, et al. Dietary potassium intake and mortality in long-term hemodialysis patients. Am J Kidney Dis 2010;56:338-347

46. Chen Y, Sang Y, Ballew SH, et al. Race, serum potassium, and associations with ESRD and mortality. Am J Kidney Dis 2017;70:244-251

47. Khoueiry G, Waked A, Goldman M, et al. Dietary intake in hemodialysis patients does not reflect a heart healthy diet. J Ren Nutr 2011;21:438-447

48. St-Jules DE, Goldfarb DS, Sevick MA. Nutrient non-equivalence: does restricting high-potassium plant foods help to prevent hyperkalemia in hemodialysis patients? J Ren Nutr 2016;26:282-287

49. Sim JJ, Bhandari SK, Smith N, et al. Phosphorus and risk of renal failure in subjects with normal renal function. Am J Med 2013;126:311-318

50. Gutiérrez OM, Mannstadt M, Isakova T, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008;359:584-592

51. Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest 2011;121:4393-4408

52. Kalantar-Zadeh K, Gutekunst L, Mehrotra R, et al. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin J Am Soc Nephrol 2010;5:519-530

53. Moorthi RN, Armstrong CL, Janda K, Ponsler-Sipes K, Asplin JR, Moe SM. The effect of a diet containing 70% protein from plants on mineral metabolism and musculoskeletal health in chronic kidney disease. Am J Nephrol 2014;40:582-591

54. ullivan C, Sayre SS, Leon JB, et al. Effect of food additives on hyperphosphatemia among patients with end-stage renal disease: a randomized controlled trial. JAMA 2009;301:629-635

55. Lynch KE, Lynch R, Curhan GC, Brunelli SM. Prescribed dietary phosphate restriction and survival among hemodialysis patients. Clin J Am Soc Nephrol 2011;6:620-629

56. Tonelli M, Pannu N, Manns B. Oral phosphate binders in patients with kidney failure. N Engl J Med 2010;362:1312-1324

57. Spiegel DM, Brady K. Calcium balance in normal individuals and in patients with chronic kidney disease on low- and high-calcium diets. Kidney Int 2012;81:1116-1122

58. Bushinsky DA. Clinical application of calcium modeling in patients with chronic kidney disease. Nephrol Dial Transplant 2012;27:10-13

59. Hill KM, Martin BR, Wastney ME, et al. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3-4 chronic kidney disease. Kidney Int 2013;83:959-966

60. de Zeeuw D, Agarwal R, Amdahl M, et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet 2010;376:1543-1551

61. Powe CE, Evans MK, Wenger J, et al. Vitamin D–binding protein and vitamin D status of black Americans and white Americans. N Engl J Med 2013;369:1991-2000

62. Ketteler M, Block GA, Evenepoel P, et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: what’s changed and why it matters. Kidney Int 2017;92:26-36

63. Young VR, Pellett PL. Plant proteins in relation to human protein and amino acid nutrition. Am J Clin Nutr 1994;59:Suppl:1203S-1212S

64. Chen X, Wei G, Jalili T, et al. The associations of plant protein intake with all-cause mortality in CKD. Am J Kidney Dis 2016;67:423-430

65. Sumida K, Molnar MZ, Potukuchi PK, et al. Constipation and incident CKD. J Am Soc Nephrol 2017;28:1248-1258

66. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505:559-563

67. Koppe L, Mafra D, Fouque D. Probiotics and chronic kidney disease. Kidney Int 2015;88:958-966

68. Rossi M, Johnson DW, Xu H, et al. Dietary protein-fiber ratio associates with circulating levels of indoxyl sulfate and p-cresyl sulfate in chronic kidney disease patients. Nutr Metab Cardiovasc Dis 2015;25:860-865

69. Schulman G, Berl T, Beck GJ, et al. Randomized placebo-controlled EPPIC trials of AST-120 in CKD. J Am Soc Nephrol 2015;26:1732-1746

70. Chiavaroli L, Mirrahimi A, Sievenpiper JL, Jenkins DJ, Darling PB. Dietary fiber effects in chronic kidney disease: a systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr 2015;69:761-768

71. Salmean YA, Segal MS, Palii SP, Dahl WJ. Fiber supplementation lowers plasma p-cresol in chronic kidney disease patients. J Ren Nutr 2015;25:316-320

72. Han E, Yun Y, Kim G, et al. Effects of omega-3 fatty acid supplementation on diabetic nephropathy progression in patients with diabetes and hypertriglyceridemia. PLoS One 2016;11:e0154683-e0154683

73. Hood VL, Tannen RL. Protection of acid–base balance by pH regulation of acid production. N Engl J Med 1998;339:819-826

74. Krapf R, Vetsch R, Vetsch W, Hulter HN. Chronic metabolic acidosis increases the serum concentration of 1,25-dihydroxyvitamin D in humans by stimulating its production rate: critical role of acidosis-induced renal hypophosphatemia. J Clin Invest 1992;90:2456-2463

75. So R, Song S, Lee JE, Yoon HJ. The association between renal hyperfiltration and the sources of habitual protein intake and dietary acid load in a general population with preserved renal function: the KoGES Study. PLoS One 2016;11:e0166495-e0166495

76. Goraya N, Simoni J, Jo C, Wesson DE. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int 2012;81:86-93

77. de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol 2009;20:2075-2084

78. Swaminathan S. Trace elements, toxic metals, and metalloids in kidney disease. In: Kopple JD, Massry S, Kalantar-Zadeh K, eds. Nutritional management of renal disease. 3rd ed. London: Academic Press of Elsevier, 2013:339-49.

79. Clase CM, Ki V, Holden RM. Water-soluble vitamins in people with low glomerular filtration rate or on dialysis: a review. Semin Dial 2013;26:546-567

80. Ishigami J, Grams ME, Naik RP, Coresh J, Matsushita K. Chronic kidney disease and risk for gastrointestinal bleeding in the community: the Atherosclerosis Risk in Communities (ARIC) Study. Clin J Am Soc Nephrol 2016;11:1735-1743

81. Xu X, Qin X, Li Y, et al. Efficacy of folic acid therapy on the progression of chronic kidney disease: the Renal Substudy of the China Stroke Primary Prevention Trial. JAMA Intern Med 2016;176:1443-1450

82. McCabe KM, Booth SL, Fu X, et al. Dietary vitamin K and therapeutic warfarin alter the susceptibility to vascular calcification in experimental chronic kidney disease. Kidney Int 2013;83:835-844

服务条款 | 隐私政策 | 联系我们