提示: 手机请竖屏浏览!

下一代测序用于诊断疑似遗传病
Next-Generation Sequencing to Diagnose Suspected Genetic Disorders


David R. Adams ... 其他 • 2018.10.04

临床下一代测序目前常用于传统上进行基因检测的医疗实践中——例如,医学遗传学以及神经遗传学等医学亚专科。新诊断应用包括作为重症监护治疗病房(特别是新生儿和儿科的重症监护治疗病房)中的快速报告方法1,以及在复杂疾病于病程早期使用2。美国、中国和其他地区的大型项目正在探索和开发临床下一代测序在精准医学中的应用3,4。这提示未来基因组数据将影响医疗决策,并且适用的患者多样且不断增长(见视频)。





作者信息

David R. Adams, M.D., Ph.D., and Christine M. Eng, M.D.
From the Office of the Clinical Director, National Human Genome Research Institute, and the Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD (D.R.A.); and the Department of Molecular and Human Genetics, Baylor College of Medicine, and Baylor Genetics — both in Houston (C.M.E.). Address reprint requests to Dr. Adams at the Undiagnosed Diseases Program, National Institutes of Health, Bldg. 10, Rm. 10C103E, 10 Center Dr., Bethesda, MD 20892, or at david.adams@nih.gov.

 

参考文献

1. Meng L, Pammi M, Saronwala A, et al. Use of exome sequencing for infants in intensive care units: ascertainment of severe single-gene disorders and effect on medical management. JAMA Pediatr 2017;171:e173438-e173438.

2. Stark Z, Schofield D, Alam K, et al. Prospective comparison of the cost-effectiveness of clinical whole-exome sequencing with that of usual care overwhelmingly supports early use and reimbursement. Genet Med 2017;19:867-874.

3. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015;372:793-795.

4. Cyranoski D. China embraces precision medicine on a massive scale. Nature 2016;529:9-10.

5. Priest JR. A primer to clinical genome sequencing. Curr Opin Pediatr 2017;29:513-519.

6. Bowdin S, Gilbert A, Bedoukian E, et al. Recommendations for the integration of genomics into clinical practice. Genet Med 2016;18:1075-1084.

7. Beck TF, Mullikin JC. Systematic evaluation of Sanger validation of next-generation sequencing variants. Clin Chem 2016;62:647-654.

8. Kalia SS, Adelman K, Bale SJ, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med 2017;19:249-255.

9. Richards CS, Bale S, Bellissimo DB, et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med 2008;10:294-300.

10. MacArthur DG, Manolio TA, Dimmock DP, et al. Guidelines for investigating causality of sequence variants in human disease. Nature 2014;508:469-476.

11. Karczewski KJ, Weisburd B, Thomas B, et al. The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res 2017;45:D1:D840-D845.

12. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-424.

13. Biesecker LG, Harrison SM. The ACMG/AMP reputable source criteria for the interpretation of sequence variants. Genet Med 2018 March 15 (Epub ahead of print).

14. Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 2018;46:D1:D1062-D1067.

15. Posey JE, Harel T, Liu P, et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med 2017;376:21-31.

16. Shah N, Hou YC, Yu HC, et al. Identification of misclassified ClinVar variants via disease population prevalence. Am J Hum Genet 2018;102:609-619.

17. Buske OJ, Girdea M, Dumitriu S, et al. PhenomeCentral: a portal for phenotypic and genotypic matchmaking of patients with rare genetic diseases. Hum Mutat 2015;36:931-940.

18. Firth HV, Richards SM, Bevan AP, et al. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am J Hum Genet 2009;84:524-533.

19. Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat 2015;36:928-930.

20. Sobreira NLM, Arachchi H, Buske OJ, et al. Matchmaker Exchange. Curr Protoc Hum Genet 2017;95:9.31.1-9.31.15.

21. Dillon OJ, Lunke S, Stark Z, et al. Exome sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders. Eur J Hum Genet 2018;26:644-651.

22. Walsh M, Bell KM, Chong B, et al. Diagnostic and cost utility of whole exome sequencing in peripheral neuropathy. Ann Clin Transl Neurol 2017;4:318-325.

23. Consugar MB, Navarro-Gomez D, Place EM, et al. Panel-based genetic diagnostic testing for inherited eye diseases is highly accurate and reproducible, and more sensitive for variant detection, than exome sequencing. Genet Med 2015;17:253-261.

24. Rim JH, Kim SH, Hwang IS, et al. Efficient strategy for the molecular diagnosis of intractable early-onset epilepsy using targeted gene sequencing. BMC Med Genomics 2018;11:6-6.

25. Kreek MJ. Goals and rationale for pharmacotherapeutic approach in treating cocaine dependence: insights from basic and clinical research. NIDA Res Monogr 1997;175:5-35.

26. Retterer K, Juusola J, Cho MT, et al. Clinical application of whole-exome sequencing across clinical indications. Genet Med 2016;18:696-704.

27. Tan TY, Dillon OJ, Stark Z, et al. Diagnostic impact and cost-effectiveness of whole-exome sequencing for ambulant children with suspected monogenic conditions. JAMA Pediatr 2017;171:855-862.

28. Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med 2013;369:1502-1511.

29. Yang Y, Muzny DM, Xia F, et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 2014;312:1870-1879.

30. Lionel AC, Costain G, Monfared N, et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med 2018;20:435-443.

31. Farwell KD, Shahmirzadi L, El-Khechen D, et al. Enhanced utility of family-centered diagnostic exome sequencing with inheritance model-based analysis: results from 500 unselected families with undiagnosed genetic conditions. Genet Med 2015;17:578-586.

32. Ghaoui R, Cooper ST, Lek M, et al. Use of whole-exome sequencing for diagnosis of limb-girdle muscular dystrophy: outcomes and lessons learned. JAMA Neurol 2015;72:1424-1432.

33. Jarvik GP, Amendola LM, Berg JS, et al. Return of genomic results to research participants: the floor, the ceiling, and the choices in between. Am J Hum Genet 2014;94:818-826.

34. Genetic Information Nondiscrimination Act of 2008. Washington, DC: Equal Employment Opportunity Commission (https://www.eeoc.gov/laws/statutes/gina.cfm).

35. Deverka PA, Kaufman D, McGuire AL. Overcoming the reimbursement barriers for clinical sequencing. JAMA 2014;312:1857-1858.

36. Farnaes L, Hildreth A, Sweeney NM, et al. Rapid whole-genome sequencing decreases infant morbidity and cost of hospitalization. NPJ Genom Med 2018;3:10-10.

37. Alfares A, Aloraini T, Subaie LA, et al. Whole-genome sequencing offers additional but limited clinical utility compared with reanalysis of whole-exome sequencing. Genet Med 2018 March 22 (Epub ahead of print).

38. Weitzel KW, Alexander M, Bernhardt BA, et al. The IGNITE network: a model for genomic medicine implementation and research. BMC Med Genomics 2016;9:1-1.

39. Ewans LJ, Schofield D, Shrestha R, et al. Whole-exome sequencing reanalysis at 12 months boosts diagnosis and is cost-effective when applied early in Mendelian disorders. Genet Med 2018 March 29 (Epub ahead of print).

40. Biesecker LG. Opportunities and challenges for the integration of massively parallel genomic sequencing into clinical practice: lessons from the ClinSeq project. Genet Med 2012;14:393-398.

41. Lindor NM, Thibodeau SN, Burke W. Whole-genome sequencing in healthy people. Mayo Clin Proc 2017;92:159-172.

42. Biesecker BB, Lewis KL, Umstead KL, et al. Web platform vs in-person genetic counselor for return of carrier results from exome sequencing: a randomized clinical trial. JAMA Intern Med 2018;178:338-346.

43. Table of pharmacogenomic biomarkers in drug labeling. Silver Spring, MD: Food and Drug Administration, 2017 (https://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm).

44. Bush WS, Crosslin DR, Owusu-Obeng A, et al. Genetic variation among 82 pharmacogenes: the PGRNseq data from the eMERGE Network. Clin Pharmacol Ther 2016;100:160-169.

45. Tavares LC, Marcatto LR, Santos PC. Genotype-guided warfarin therapy: current status. Pharmacogenomics 2018;19:667-685.

46. Ioannidis JPA, Khoury MJ. Evidence-based medicine and big genomic data. Hum Mol Genet 2018;27:R1:R2-R7.

47. Vassy JL, Christensen KD, Schonman EF, et al. The impact of whole-genome sequencing on the primary care and outcomes of healthy adult patients: a pilot randomized trial. Ann Intern Med 2017 June 27 (Epub ahead of print).

48. Volk AE, Kubisch C. The rapid evolution of molecular genetic diagnostics in neuromuscular diseases. Curr Opin Neurol 2017;30:523-528.

49. Zepeda-Mendoza CJ, Ibn-Salem J, Kammin T, et al. Computational prediction of position effects of apparently balanced human chromosomal rearrangements. Am J Hum Genet 2017;101:206-217.

50. Barseghyan H, Tang W, Wang RT, et al. Next-generation mapping: a novel approach for detection of pathogenic structural variants with a potential utility in clinical diagnosis. Genome Med 2017;9:90-90.

51. Kuo FC, Mar BG, Lindsley RC, Lindeman NI. The relative utilities of genome-wide, gene panel, and individual gene sequencing in clinical practice. Blood 2017;130:433-439.

52. The 100,000 Genomes Project. London: Genomics England (https://www.genomicsengland.co.uk/the-100000-genomes-project/).

53. All of Us research program. Bethesda, MD: National Institutes of Health, 2017 (https://allofus.nih.gov/).

服务条款 | 隐私政策 | 联系我们