提示: 手机请竖屏浏览!

利用碱过剩诊断酸碱平衡失调
Diagnostic Use of Base Excess in Acid–Base Disorders


Kenrick Berend ... 其他 • 2018.04.12

近100年来,临床医师一直在试图准确评估酸碱平衡紊乱并找出其相关机制1,2。人们提出了多种描述酸碱平衡失调的模式。定量酸碱平衡失调最常使用的三种方法是:基于肾和肺酸碱相互作用的生理学方法3、基于强离子及白蛋白和磷酸盐等弱离子中pH相关性改变的物理化学方法(也称作Stewart法)4-5,以及基于对代谢性酸碱状态改变进行定量(由血气分析设备提供)的碱过剩法6-12。在急性病治疗情况下用于创伤患者评估的预后标志物中,标准碱过剩是研究最为充分的一种6。尽管全世界大部分市售血气分析仪均可提供标准碱过剩的数据6,9-12,但许多内科医师并不了解这个标志物的意义以及如何使用。本综述讨论标准碱过剩的重要价值并给出了证明碱过剩法在临床实践中带来效益的几个病例摘要。





作者信息

Kenrick Berend, Ph.D., M.D.
From St. Elisabeth Hospital, Willemstad, Curaçao. Address reprint requests to Dr. Berend at the Department of Nephrology, St. Elisabeth Hospital, J.H.J. Hamelbergweg 193, Willemstad, Curaçao, or at kenber2@me.com.

 

参考文献

1. Kofstad J. Base excess: a historical review — has the calculation of base excess been more standardised the last 20 years? Clin Chim Acta 2001;307:193-195.

2. Prough DS, White RT. Acidosis associated with perioperative saline administration: dilution or delusion? Anesthesiology 2000;93:1167-1169.

3. Berend K, de Vries APJ, Gans ROB. Physiological approach to assessment of acid–base disturbances. N Engl J Med 2014;371:1434-1445.

4. Stewart PA. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 1983;61:1444-1461.

5. Seifter JL. Integration of acid–base and electrolyte disorders. N Engl J Med 2014;371:1821-1831.

6. Ibrahim I, Chor WP, Chue KM, et al. Is arterial base deficit still a useful prognostic marker in trauma? A systematic review. Am J Emerg Med 2016;34:626-635.

7. Schiraldi F, Guiotto G. Base excess, strong ion difference, and expected compensations: as simple as it is. Eur J Emerg Med 2014;21:403-408.

8. Park M, Maciel AT, Noritomi DT, Pontes de Azevedo LC, Taniguchi LU, da Cruz Neto LM. Effect of PaCO2 variation on standard base excess value in critically ill patients. J Crit Care 2009;24:484-491.

9. Seo MH, Choa M, You JS, et al. Hypoalbuminemia, low base excess values, and tachypnea predict 28-day mortality in severe sepsis and septic shock patients in the emergency department. Yonsei Med J 2016;57:1361-1369.

10. Yasuda K, Hayashi M, Murayama M, Yamakita N. Acidosis-induced hypochloremic alkalosis in diabetic ketoacidosis confirmed by the modified base excess method. J Clin Endocrinol Metab 2016;101:2390-2395.

11. Wijaya R, Ng JH, Ong L, Wong AS. Can venous base excess replace arterial base excess as a marker of early shock and a predictor of survival in trauma? Singapore Med J 2016;57:73-76.

12. Davis JW, Dirks RC, Kaups KL, Tran P. Base deficit is superior to lactate in trauma. Am J Surg 2018 January 31 (Epub ahead of print).

13. West JB. The physiological challenges of the 1952 Copenhagen poliomyelitis epidemic and a renaissance in clinical respiratory physiology. J Appl Physiol (1985) 2005;99:424-432.

14. Astrup PB, Severinghaus JW. The history of blood gases, acids and bases. Copenhagen: Munksgaard, 1986.

15. Story DA. Bench-to-bedside review: a brief history of clinical acid-base. Crit Care 2004;8:253-258.

16. Van Slyke DD. Some points of acid-base history in physiology and medicine. Ann N Y Acad Sci 1966;133:5-14.

17. Andersen EW, Ibsen B. The anaesthetic management of patients with poliomyelitis and respiratory paralysis. Br Med J 1954;1:786-788.

18. Astrup P, Gøtzche H, Neukirch F. Laboratory investigations during treatment of patients with poliomyelitis and respiratory paralysis. Br Med J 1954;1:780-786.

19. Bower AG, Bennett VR, Dillon JB, Axelrod B. Investigation on the care and treatment of poliomyelitis patients. Ann West Med Surg 1950;4:561-582.

20. Bower AG, Bennett VR, Dillon JB, Axelrod B. Investigation on the care and treatment of poliomyelitis patients. II. Physiological studies of various treatment procedures and mechanical equipment. Ann West Med Surg 1950;4:686-716.

21. Ibsen B. The anaesthetist’s viewpoint on the treatment of respiratory complications in poliomyelitis during the epidemic in Copenhagen, 1952. Proc R Soc Med 1954;47:72-74.

22. Jungner I, Laurent B. The poliomyelitis epidemic in Stockholm 1953: biochemical laboratory investigations. Acta Med Scand Suppl 1956;316:71-79.

23. Lassen HCA. A preliminary report on the 1952 epidemic of poliomyelitis in Copenhagen with special reference to the treatment of acute respiratory insufficiency. Lancet 1953;1:37-41.

24. Severinghaus JW. The invention and development of blood gas analysis apparatus. Anesthesiology 2002;97:253-256.

25. Siggaard-Andersen O, Fogh-Andersen N. Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid-base disturbance. Acta Anaesthesiol Scand Suppl 1995;107:123-128.

26. Singer RB, Hastings AB. An improved clinical method for the estimation of disturbances of the acid-base balance of human blood. Medicine (Baltimore) 1948;27:223-242.

27. Juern J, Khatri V, Weigelt J. Base excess: a review. J Trauma Acute Care Surg 2012;73:27-32.

28. Andersen OS. The pH-log pCO2 blood acid-base nomogram revised. Scand J Clin Lab Invest 1962;14:598-604.

29. Severinghaus JW. Siggaard-Andersen and the “Great Trans-Atlantic Acid-Base Debate.” Scand J Clin Lab Invest Suppl 1993;214:99-104.

30. Schwartz WB, Relman AS. A critique of the parameters used in the evaluation of acid-base disorders — whole-blood buffer base and standard bicarbonate compared with blood pH and plasma bicarbonate concentration. N Engl J Med 1963;268:1382-1388.

31. Schlichtig R, Grogono AW, Severinghaus JW. Human PaCO2 and standard base excess compensation for acid-base imbalance. Crit Care Med 1998;26:1173-1179.

32. Knutzen L, Svirko E, Impey L. The significance of base deficit in acidemic term neonates. Am J Obstet Gynecol 2015;213(3):373.e1-373.e7.

33. Blood gas and pH analysis and related measurements: approved guideline. NCCLS document no. C46. Wayne, PA: National Committee for Clinical Laboratory Standards, 2001.

34. Morgan TJ, Clark C, Endre ZH. Accuracy of base excess — an in vitro evaluation of the Van Slyke equation. Crit Care Med 2000;28:2932-2936.

35. Ross MG, Jessie M, Amaya K, et al. Correlation of arterial fetal base deficit and lactate changes with severity of variable heart rate decelerations in the near-term ovine fetus. Am J Obstet Gynecol 2013;208(4):285.e1-285.e6.

36. Mokarami P. Pitfalls in interpreting umbilical cord blood gases and lactate at birth (Ph.D. thesis). Malmo, Sweden: Lund University, 2013.

37. Astrup P, Jorgensen K, Andersen OS, Engel K. The acid-base metabolism: a new approach. Lancet 1960;1:1035-1039.

38. Adrogué HJ, Gennari FJ, Galla JH, Madias NE. Assessing acid-base disorders. Kidney Int 2009;76:1239-1247.

39. Peake MJ, White GH. Arterial blood gas analysis: selecting the clinically appropriate option for calculating base excess. Ann Clin Biochem 2002;39:614-615.

40. Nakamaru K, Hatakeyama N, Yamada M, Yamazaki M. Comparison of bicarbonate and base excess values analyzed by four different blood gas analyzers. J Anesth 2007;21:429-432.

41. Funk GC, Doberer D, Kneidinger N, Lindner G, Holzinger U, Schneeweiss B. Acid-base disturbances in critically ill patients with cirrhosis. Liver Int 2007;27:901-909.

42. Maciel AT, Park M. Differences in acid-base behavior between intensive care unit survivors and nonsurvivors using both a physicochemical and a standard base excess approach: a prospective, observational study. J Crit Care 2009;24:477-483.

43. Jensen IW, Jensen S. Diabetic ketoalkalosis. Diabetes Care 1988;11:368-369.

44. Pape A, Nguyen HV, Flack JR. Recurrent diabetic ketoalkalosis in a patient with Type 1 diabetes mellitus and severe gastroparesis. Diabet Med 2010;27:607-608.

45. Bayliss DA, Cidlowski JA, Millhorn DE. The stimulation of respiration by progesterone in ovariectomized cat is mediated by an estrogen-dependent hypothalamic mechanism requiring gene expression. Endocrinology 1990;126:519-527.

46. Passino C, Giannoni A, Mannucci F, et al. Abnormal hyperventilation in patients with hepatic cirrhosis: role of enhanced chemosensitivity to carbon dioxide. Int J Cardiol 2012;154:22-26.

47. Tumgor G. Cirrhosis and hepatopulmonary syndrome. World J Gastroenterol 2014;20:2586-2594.

48. Gale SC, Kocik JF, Creath R, Crystal JS, Dombrovskiy VY. A comparison of initial lactate and initial base deficit as predictors of mortality after severe blunt trauma. J Surg Res 2016;205:446-455.

49. Maegele M, Lefering R, Wafaisade A, et al. Revalidation and update of the TASH-Score: a scoring system to predict the probability for massive transfusion as a surrogate for life-threatening haemorrhage after severe injury. Vox Sang 2011;100:231-238.

50. Mutschler M, Nienaber U, Brockamp T, et al. Renaissance of base deficit for the initial assessment of trauma patients: a base deficit-based classification for hypovolemic shock developed on data from 16,305 patients derived from the TraumaRegister DGU. Crit Care 2013;17(2):R42-R42.

51. Dunham MP, Sartorius B, Laing GL, Bruce JL, Clarke DL. A comparison of base deficit and vital signs in the early assessment of patients with penetrating trauma in a high burden setting. Injury 2017;48:1972-1977.

52. Söderlund T, Ikonen A, Pyhältö T, Handolin L. Factors associated with in-hospital outcomes in 594 consecutive patients suffering from severe blunt chest trauma. Scand J Surg 2015;104:115-120.

53. Davis JW, Kaups KL, Parks SN. Base deficit is superior to pH in evaluating clearance of acidosis after traumatic shock. J Trauma 1998;44:114-118.

54. Connelly CR, Schreiber MA. Endpoints in resuscitation. Curr Opin Crit Care 2015;21:512-519.

55. Davis JW, Parks SN, Kaups KL, Gladen HE, O’Donnell-Nicol S. Admission base deficit predicts transfusion requirements and risk of complications. J Trauma 1996;41:769-774.

56. Davis JW, Shackford SR, Mackersie RC, Hoyt DB. Base deficit as a guide to volume resuscitation. J Trauma 1988;28:1464-1467.

57. Callaway DW, Shapiro NI, Donnino MW, Baker C, Rosen CL. Serum lactate and base deficit as predictors of mortality in normotensive elderly blunt trauma patients. J Trauma 2009;66:1040-1044.

58. Eberhard LW, Morabito DJ, Matthay MA, et al. Initial severity of metabolic acidosis predicts the development of acute lung injury in severely traumatized patients. Crit Care Med 2000;28:125-131.

59. Cheddie S, Muckart DJ, Hardcastle TC. Base deficit as an early marker of coagulopathy in trauma. S Afr J Surg 2013;51:88-90.

60. Shallwani H, Waqas M, Waheed S, Siddiqui M, Froz A, Bari ME. Does base deficit predict mortality in patients with severe traumatic brain injury? Int J Surg 2015;22:125-130.

61. Cancio LC, Galvez E Jr, Turner CE, Kypreos NG, Parker A, Holcomb JB. Base deficit and alveolar-arterial gradient during resuscitation contribute independently but modestly to the prediction of mortality after burn injury. J Burn Care Res 2006;27:289-296.

62. Peñasco Y, González-Castro A, Rodríguez-Borregán JC, Llorca J. Base excess, a useful marker in the prognosis of chest trauma in the geriatric population. Rev Esp Anestesiol Reanim 2017;64:250-256.

63. Ouellet JF, Roberts DJ, Tiruta C, et al. Admission base deficit and lactate levels in Canadian patients with blunt trauma: are they useful markers of mortality? J Trauma Acute Care Surg 2012;72:1532-1535.

64. Tremblay LN, Feliciano DV, Rozycki GS. Assessment of initial base deficit as a predictor of outcome: mechanism of injury does make a difference. Am Surg 2002;68:689-693.

65. American College of Obstetricians and Gynecologists, American Academy of Pediatrics. Neonatal encephalopathy and neurologic outcome. 2nd ed. Washington, DC: American College of Obstetricians and Gynecologists, 2014.

66. Randolph LC, Takacs M, Davis KA. Resuscitation in the pediatric trauma population: admission base deficit remains an important prognostic indicator. J Trauma 2002;53:838-842.

67. Martin MJ, FitzSullivan E, Salim A, Berne TV, Towfigh S. Use of serum bicarbonate measurement in place of arterial base deficit in the surgical intensive care unit. Arch Surg 2005;140:745-751.

68. Middleton P, Kelly AM, Brown J, Robertson M. Agreement between arterial and central venous values for pH, bicarbonate, base excess, and lactate. Emerg Med J 2006;23:622-624.

服务条款 | 隐私政策 | 联系我们