提示: 手机请竖屏浏览!

遗传变异、比较基因组学和疾病诊断
Genetic Variation, Comparative Genomics, and the Diagnosis of Disease


Evan E. Eichler ... 其他 • 2019.07.04
相关阅读
• 临床基因组学揭示了发病的分子机制

发现人类遗传病的相关突变是比较基因组学(见术语表)的一项工作。尽管有许多不同的策略和方法,但首要前提是与未患病的人(对照)相比,患病的人携带显著过多的致病性DNA变异体;未患病的人可以是临床确定的1,也可以是通过调查大范围一般人群确定的2。变异体对于疾病而言越是独有,其外显率越高、效应量越大,并且与疾病诊断和未来治疗研究的相关性越大。人类遗传学研究者最常应用的方法是病例对照设计,但也有在家族背景下追溯变异体和疾病的其他方法,或者根据趋异或新生突变的进化模式考虑不同类型突变概率的其他方法3,4。方法可能简单明了,但发现致病变异及其作用机制的过程却并不简单,可能需要数十年研究才能鉴定出孟德尔遗传性状和复杂遗传性状的基础变异体(见视频,可在nejm.org获取)。





作者信息

Evan E. Eichler, Ph.D.
From the Department of Genome Sciences, University of Washington School of Medicine, and the Howard Hughes Medical Institute, University of Washington, Seattle. Address reprint requests to Dr. Eichler at the Department of Genome Sciences, University of Washington School of Medicine, Foege S-413A, Box 355065, 3720 15th Ave. NE, Seattle, WA 98195-5065, or at eee@gs.washington.edu.

 

参考文献

1. Natarajan P, Peloso GM, Zekavat SM, et al. Deep-coverage whole genome sequences and blood lipids among 16,324 individuals. Nat Commun 2018;9:3391-3391.

2. Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016;536:285-291.

3. O’Roak BJ, Vives L, Girirajan S, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012;485:246-250.

4. Samocha KE, Robinson EB, Sanders SJ, et al. A framework for the interpretation of de novo mutation in human disease. Nat Genet 2014;46:944-950.

5. Deeb SS. The molecular basis of variation in human color vision. Clin Genet 2005;67:369-377.

6. Neitz M, Neitz J. Numbers and ratios of visual pigment genes for normal red-green color vision. Science 1995;267:1013-1016.

7. Hayashi T, Motulsky AG, Deeb SS. Position of a ‘green-red’ hybrid gene in the visual pigment array determines colour-vision phenotype. Nat Genet 1999;22:90-93.

8. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 2015;526:68-74.

9. The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 2012;491:56-65.

10. Sudmant PH, Rausch T, Gardner EJ, et al. An integrated map of structural variation in 2,504 human genomes. Nature 2015;526:75-81.

11. Sudmant PH, Mallick S, Nelson BJ, et al. Global diversity, population stratification, and selection of human copy-number variation. Science 2015;349:aab3761-aab3761.

12. Sudmant PH, Kitzman JO, Antonacci F, et al. Diversity of human copy number variation and multicopy genes. Science 2010;330:641-646.

13. Huddleston J, Chaisson MJP, Steinberg KM, et al. Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res 2017;27:677-685.

14. Chaisson MJP, Sanders AD, Zhao X, et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat Commun 2019;10:1784-1784.

15. Chaisson MJ, Wilson RK, Eichler EE. Genetic variation and the de novo assembly of human genomes. Nat Rev Genet 2015;16:627-640.

16. Mills RE, Walter K, Stewart C, et al. Mapping copy number variation by population-scale genome sequencing. Nature 2011;470:59-65.

17. Lupski JR. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 1998;14:417-422.

18. Sharp AJ, Hansen S, Selzer RR, et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat Genet 2006;38:1038-1042.

19. Sebat J, Lakshmi B, Malhotra D, et al. Strong association of de novo copy number mutations with autism. Science 2007;316:445-449.

20. Song JHT, Lowe CB, Kingsley DM. Characterization of a human-specific tandem repeat associated with bipolar disorder and schizophrenia. Am J Hum Genet 2018;103:421-430.

21. Aneichyk T, Hendriks WT, Yadav R, et al. Dissecting the causal mechanism of X-linked dystonia-parkinsonism by integrating genome and transcriptome assembly. Cell 2018;172(5):897-909.e21.

22. Ishiura H, Doi K, Mitsui J, et al. Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat Genet 2018;50:581-590.

23. Chiang C, Scott AJ, Davis JR, et al. The impact of structural variation on human gene expression. Nat Genet 2017;49:692-699.

24. Conrad DF, Andrews TD, Carter NP, Hurles ME, Pritchard JK. A high-resolution survey of deletion polymorphism in the human genome. Nat Genet 2006;38:75-81.

25. Cooper GM, Coe BP, Girirajan S, et al. A copy number variation morbidity map of developmental delay. Nat Genet 2011;43:838-846.

26. Lemmers RJ, van der Vliet PJ, Klooster R, et al. A unifying genetic model for facioscapulohumeral muscular dystrophy. Science 2010;329:1650-1653.

27. Korbel JO, Urban AE, Affourtit JP, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 2007;318:420-426.

28. Handsaker RE, Van Doren V, Berman JR, et al. Large multiallelic copy number variations in humans. Nat Genet 2015;47:296-303.

29. Schneider VA, Graves-Lindsay T, Howe K, et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res 2017;27:849-864.

30. Chaisson MJ, Huddleston J, Dennis MY, et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 2015;517:608-611.

31. Sharp AJ, Locke DP, McGrath SD, et al. Segmental duplications and copy-number variation in the human genome. Am J Hum Genet 2005;77:78-88.

32. Conrad DF, Pinto D, Redon R, et al. Origins and functional impact of copy number variation in the human genome. Nature 2010;464:704-712.

33. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature 2009;461:747-753.

34. Eichler EE, Flint J, Gibson G, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 2010;11:446-450.

35. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860-921.

36. Bailey JA, Yavor AM, Viggiano L, et al. Human-specific duplication and mosaic transcripts: the recent paralogous structure of chromosome 22. Am J Hum Genet 2002;70:83-100.

37. Iafrate AJ, Feuk L, Rivera MN, et al. Detection of large-scale variation in the human genome. Nat Genet 2004;36:949-951.

38. Vollger MR, Dishuck PC, Sorensen M, et al. Long-read sequence and assembly of segmental duplications. Nat Methods 2019;16:88-94.

39. Gordon D, Huddleston J, Chaisson MJ, et al. Long-read sequence assembly of the gorilla genome. Science 2016;352:aae0344-aae0344.

40. Sherman RM, Forman J, Antonescu V, et al. Assembly of a pan-genome from deep sequencing of 910 humans of African descent. Nat Genet 2019;51:30-35.

41. Li R, Li Y, Zheng H, et al. Building the sequence map of the human pan-genome. Nat Biotechnol 2010;28:57-63.

42. Pendleton M, Sebra R, Pang AW, et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat Methods 2015;12:780-786.

43. Seo JS, Rhie A, Kim J, et al. De novo assembly and phasing of a Korean human genome. Nature 2016;538:243-247.

44. Shi L, Guo Y, Dong C, et al. Long-read sequencing and de novo assembly of a Chinese genome. Nat Commun 2016;7:12065-12065.

45. Jain M, Koren S, Miga KH, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 2018;36:338-345.

46. Audano PA, Sulovari A, Graves-Lindsay TA, et al. Characterizing the major structural variant alleles of the human genome. Cell 2019;176(3):663-675.e19.

47. Jain M, Olsen HE, Turner DJ, et al. Linear assembly of a human centromere on the Y chromosome. Nat Biotechnol 2018;36:321-323.

48. Sekar A, Bialas AR, de Rivera H, et al. Schizophrenia risk from complex variation of complement component 4. Nature 2016;530:177-183.

49. LaCroix AJ, Stabley D, Sahraoui R, et al. GGC repeat expansion and exon 1 methylation of XYLT1 is a common pathogenic variant in Baratela-Scott syndrome. Am J Hum Genet 2019;104:35-44.

50. Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011;72:257-268.

51. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011;72:245-256.

52. McClellan JM, Lehner T, King MC. Gene discovery for complex traits: lessons from Africa. Cell 2017;171:261-264.

53. Turner TN, Coe BP, Dickel DE, et al. Genomic patterns of de novo mutation in simplex autism. Cell 2017;171(3):710-722.e12.

54. Koren S, Rhie A, Walenz BP, et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat Biotechnol 2018 October 22 (Epub ahead of print).

55. Nguyen N, Hickey G, Zerbino DR, et al. Building a pan-genome reference for a population. J Comput Biol 2015;22:387-401.

56. Garrison E, Sirén J, Novak AM, et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat Biotechnol 2018;36:875-879.

57. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014;46:310-315.

58. Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet 2013;9(8):e1003709-e1003709.

59. Kronenberg ZN, Fiddes IT, Gordon D, et al. High-resolution comparative analysis of great ape genomes. Science 2018;360:eaar6343-eaar6343.

60. Bickhart DM, Rosen BD, Koren S, et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat Genet 2017;49:643-650.

服务条款 | 隐私政策 | 联系我们