提示: 手机请竖屏浏览!

β地中海贫血
β-Thalassemias


Ali T. Taher ... 其他 • 2021.02.25
相关阅读
• CRISPR-Cas9基因编辑技术治疗镰状细胞病和β地中海贫血 • 输血依赖型β-地中海贫血患者的基因治疗

地中海贫血(又称珠蛋白生成障碍性贫血)是一组隐性遗传病,其特征是血红蛋白生成减少或不生成,以及不同严重程度的慢性贫血1。携带地中海贫血基因与对疟疾的抵抗力之间的演化关联解释了地中海贫血在撒哈拉以南非洲、中东和地中海盆地,以及一直到东南亚地区的高患病率2。人口迁移还将地中海贫血带到了之前该疾病相对罕见的欧洲和美洲3。在发达国家的资源匮乏地区和多族群居住的城市,我们在实施预防方案时遇到了困难,另一方面新生儿生存率不断提高,这些因素意味着持续的新发疾病负担。治疗方面的进展延长了地中海贫血成人患者的预期寿命,但所需资源也非常多3

根据致病的遗传突变和血红蛋白四聚体中受影响的珠蛋白链亚单位,地中海贫血又分成α地中海贫血和β地中海贫血。本刊之前已发表α地中海贫血的综述4。此次重点关注β地中海贫血。





作者信息

Ali T. Taher, M.D., Ph.D., Khaled M. Musallam, M.D., Ph.D., and M. Domenica Cappellini, M.D.
From the Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (A.T.T.); the International Network of Hematology, London (K.M.M.); and the Department of Clinical Sciences and Community, University of Milan, Ca’ Granda Foundation IRCCS Maggiore Policlinico Hospital, Milan (M.D.C.). Address reprint requests to Dr. Taher at the Department of Internal Medicine, American University of Beirut Medical Center, P.O. Box 11-0236, Beirut 11072020, Lebanon, or at ataher@aub.edu.lb.

 

参考文献

1. Rund D, Rachmilewitz E. β-Thalassemia. N Engl J Med 2005;353:1135-1146.

2. Steinberg MH, Forget BG, Higgs DR, Weatherall DJ. Disorders of hemoglobin: genetics, pathophysiology, and clinical management. 2nd ed. New York: Cambridge University Press, 2009.

3. Kattamis A, Forni GL, Aydinok Y, Viprakasit V. Changing patterns in the epidemiology of β-thalassemia. Eur J Haematol 2020;105:692-703.

4. Piel FB, Weatherall DJ. The α-thalassemias. N Engl J Med 2014;371:1908-1916.

5. Khandros E, Thom CS, D’Souza J, Weiss MJ. Integrated protein quality-control pathways regulate free α-globin in murine β-thalassemia. Blood 2012;119:5265-5275.

6. Premawardhena A, Fisher CA, Olivieri NF, et al. A novel molecular basis for beta thalassemia intermedia poses new questions about its pathophysiology. Blood 2005;106:3251-3255.

7. Kihm AJ, Kong Y, Hong W, et al. An abundant erythroid protein that stabilizes free alpha-haemoglobin. Nature 2002;417:758-763.

8. Kong Y, Zhou S, Kihm AJ, et al. Loss of alpha-hemoglobin-stabilizing protein impairs erythropoiesis and exacerbates beta-thalassemia. J Clin Invest 2004;114:1457-1466.

9. Lechauve C, Keith J, Khandros E, et al. The autophagy-activating kinase ULK1 mediates clearance of free α-globin in β-thalassemia. Sci Transl Med 2019;11:11-11.

10. Menzel S, Garner C, Gut I, et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet 2007;39:1197-1199.

11. Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 2008;322:1839-1842.

12. Liu N, Hargreaves VV, Zhu Q, et al. Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell 2018;173(2):430-442.e17.

13. Basak A, Munschauer M, Lareau CA, et al. Control of human hemoglobin switching by LIN28B-mediated regulation of BCL11A translation. Nat Genet 2020;52:138-145.

14. Uda M, Galanello R, Sanna S, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci U S A 2008;105:1620-1625.

15. Galanello R, Sanna S, Perseu L, et al. Amelioration of Sardinian beta0 thalassemia by genetic modifiers. Blood 2009;114:3935-3937.

16. Musallam KM, Rivella S, Vichinsky E, Rachmilewitz EA. Non-transfusion-dependent thalassemias. Haematologica 2013;98:833-844.

17. Graffeo L, Vitrano A, Scondotto S, et al. β-Thalassemia heterozygote state detrimentally affects health expectation. Eur J Intern Med 2018;54:76-80.

18. Garewal G, Das R, Awasthi A, Ahluwalia J, Marwaha RK. The clinical significance of the spectrum of interactions of CAP+1 (A→C), a silent beta-globin gene mutation, with other beta-thalassemia mutations and globin gene modifiers in north Indians. Eur J Haematol 2007;79:417-421.

19. Efremov GD. Dominantly inherited beta-thalassemia. Hemoglobin 2007;31:193-207.

20. Fucharoen S, Weatherall DJ. The hemoglobin E thalassemias. Cold Spring Harb Perspect Med 2012;2(8):a011734-a011734.

21. O’Donnell A, Premawardhena A, Arambepola M, et al. Age-related changes in adaptation to severe anemia in childhood in developing countries. Proc Natl Acad Sci U S A 2007;104:9440-9444.

22. Cappellini MD, Cohen A, Porter J, Taher A, Viprakasit V. Guidelines for the management of transfusion dependent thalassaemia (TDT). 3rd ed. Nicosia, Cyprus: Thalassaemia International Federation, 2014.

23. Taher A, Musallam K, Cappellini MD. Guidelines for the management of non transfusion dependent thalassaemia (NTDT). Nicosia, Cyprus: Thalassaemia International Federation, 2017.

24. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ 2008;86:480-487.

25. Sayani FA, Kwiatkowski JL. Increasing prevalence of thalassemia in America: implications for primary care. Ann Med 2015;47:592-604.

26. Angastiniotis M, Vives Corrons J-L, Soteriades ES, Eleftheriou A. The impact of migrations on the health services for rare diseases in Europe: the example of haemoglobin disorders. ScientificWorldJournal 2013;2013:727905-727905.

27. Barry RM, Chretien C, Kirby M, et al. Syrian refugees and their impact on health service delivery in the pediatric hematology/oncology clinics across Canada. J Pediatr Hematol Oncol 2020;42(2):e107-e109.

28. Vichinsky E, Cohen A, Thompson AA, et al. Epidemiologic and clinical characteristics of nontransfusion-dependent thalassemia in the United States. Pediatr Blood Cancer 2018;65(7):e27067-e27067.

29. Taher AT, Weatherall DJ, Cappellini MD. Thalassaemia. Lancet 2018;391:155-167.

30. Mihailescu AM, Musallam KM, Cappellini MD, Taher AT. Less ‘reds’ more ‘blues’: hemoglobin level and depression in non-transfusion-dependent thalassemia. Ann Hematol 2020;99:903-904.

31. Eldor A, Rachmilewitz EA. The hypercoagulable state in thalassemia. Blood 2002;99:36-43.

32. Musallam KM, Taher AT, Karimi M, Rachmilewitz EA. Cerebral infarction in β-thalassemia intermedia: breaking the silence. Thromb Res 2012;130:695-702.

33. Taher AT, Musallam KM, Karimi M, et al. Overview on practices in thalassemia intermedia management aiming for lowering complication rates across a region of endemicity: the OPTIMAL CARE study. Blood 2010;115:1886-1892.

34. Manfrè L, Giarratano E, Maggio A, Banco A, Vaccaro G, Lagalla R. MR imaging of the brain: findings in asymptomatic patients with thalassemia intermedia and sickle cell-thalassemia disease. AJR Am J Roentgenol 1999;173:1477-1480.

35. Taher AT, Musallam KM, Saliba AN, Graziadei G, Cappellini MD. Hemoglobin level and morbidity in non-transfusion-dependent thalassemia. Blood Cells Mol Dis 2015;55:108-109.

36. Angelucci E, Brittenham GM, McLaren CE, et al. Hepatic iron concentration and total body iron stores in thalassemia major. N Engl J Med 2000;343:327-331.

37. St Pierre TG, Clark PR, Chua-anusorn W, et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 2005;105:855-861.

38. Carpenter J-P, He T, Kirk P, et al. On T2* magnetic resonance and cardiac iron. Circulation 2011;123:1519-1528.

39. Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005;106:1460-1465.

40. Brittenham GM. Iron-chelating therapy for transfusional iron overload. N Engl J Med 2011;364:146-156.

41. Olivieri NF, Nathan DG, MacMillan JH, et al. Survival in medically treated patients with homozygous β-thalassemia. N Engl J Med 1994;331:574-578.

42. Borgna-Pignatti C, Rugolotto S, De Stefano P, et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica 2004;89:1187-1193.

43. Kirk P, Roughton M, Porter JB, et al. Cardiac T2* magnetic resonance for prediction of cardiac complications in thalassemia major. Circulation 2009;120:1961-1968.

44. Carpenter J-P, Roughton M, Pennell DJ, Myocardial Iron in Thalassemia (MINT) Investigators. International survey of T2* cardiovascular magnetic resonance in β-thalassemia major. Haematologica 2013;98:1368-1374.

45. Rivella S. Iron metabolism under conditions of ineffective erythropoiesis in β-thalassemia. Blood 2019;133:51-58.

46. Musallam KM, Cappellini MD, Wood JC, et al. Elevated liver iron concentration is a marker of increased morbidity in patients with β thalassemia intermedia. Haematologica 2011;96:1605-1612.

47. Pinto VM, Poggi M, Russo R, Giusti A, Forni GL. Management of the aging beta-thalassemia transfusion-dependent population — the Italian experience. Blood Rev 2019;38:100594-100594.

48. Taher AT, Cappellini MD. How I manage medical complications of β-thalassemia in adults. Blood 2018;132:1781-1791.

49. Patel K, Bhivandkar S, Desai R, Antin T. The burden of psychiatric illnesses in adult patients with beta-thalassemia: a 5-year nationwide inpatient evaluation in the United States. Ann Hematol 2019;98:851-860.

50. Carlberg KT, Singer ST, Vichinsky EP. Fertility and pregnancy in women with transfusion-dependent thalassemia. Hematol Oncol Clin North Am 2018;32:297-315.

51. Lal A, Wong TE, Andrews J, et al. Transfusion practices and complications in thalassemia. Transfusion 2018;58:2826-2835.

52. Maggio A, Kattamis A, Felisi M, et al. Evaluation of the efficacy and safety of deferiprone compared with deferasirox in paediatric patients with transfusion-dependent haemoglobinopathies (DEEP-2): a multicentre, randomised, open-label, non-inferiority, phase 3 trial. Lancet Haematol 2020;7(6):e469-e478.

53. Pennell DJ, Porter JB, Piga A, et al. A 1-year randomized controlled trial of deferasirox vs deferoxamine for myocardial iron removal in β-thalassemia major (CORDELIA). Blood 2014;123:1447-1454.

54. Pennell DJ, Berdoukas V, Karagiorga M, et al. Randomized controlled trial of deferiprone or deferoxamine in beta-thalassemia major patients with asymptomatic myocardial siderosis. Blood 2006;107:3738-3744.

55. Tanner MA, Galanello R, Dessi C, et al. A randomized, placebo-controlled, double-blind trial of the effect of combined therapy with deferoxamine and deferiprone on myocardial iron in thalassemia major using cardiovascular magnetic resonance. Circulation 2007;115:1876-1884.

56. Pennell DJ, Porter JB, Cappellini MD, et al. Deferasirox for up to 3 years leads to continued improvement of myocardial T2* in patients with β-thalassemia major. Haematologica 2012;97:842-848.

57. Cappellini MD, Bejaoui M, Agaoglu L, et al. Iron chelation with deferasirox in adult and pediatric patients with thalassemia major: efficacy and safety during 5 years’ follow-up. Blood 2011;118:884-893.

58. Maggio A, D’Amico G, Morabito A, et al. Deferiprone versus deferoxamine in patients with thalassemia major: a randomized clinical trial. Blood Cells Mol Dis 2002;28:196-208.

59. Taher AT, Origa R, Perrotta S, et al. New film-coated tablet formulation of deferasirox is well tolerated in patients with thalassemia or lower-risk MDS: results of the randomized, phase II ECLIPSE study. Am J Hematol 2017;92:420-428.

60. Calvaruso G, Vitrano A, Di Maggio R, et al. Deferiprone versus deferoxamine in thalassemia intermedia: results from a 5-year long-term Italian multicenter randomized clinical trial. Am J Hematol 2015;90:634-638.

61. Taher AT, Porter JB, Viprakasit V, et al. Deferasirox effectively reduces iron overload in non-transfusion-dependent thalassemia (NTDT) patients: 1-year extension results from the THALASSA study. Ann Hematol 2013;92:1485-1493.

62. Suragani RNVS, Cadena SM, Cawley SM, et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med 2014;20:408-414.

63. Suragani RNVS, Cawley SM, Li R, et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine β-thalassemia. Blood 2014;123:3864-3872.

64. Guerra A, Oikonomidou PR, Sinha S, et al. Lack of Gdf11 does not improve anemia or prevent the activity of RAP-536 in a mouse model of β-thalassemia. Blood 2019;134:568-572.

65. Piga A, Perrotta S, Gamberini MR, et al. Luspatercept improves hemoglobin levels and blood transfusion requirements in a study of patients with β-thalassemia. Blood 2019;133:1279-1289.

66. Cappellini MD, Viprakasit V, Taher AT, et al. A phase 3 trial of luspatercept in patients with transfusion-dependent β-thalassemia. N Engl J Med 2020;382:1219-1231.

67. Angelucci E, Matthes-Martin S, Baronciani D, et al. Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel. Haematologica 2014;99:811-820.

68. Mohamed SY. Thalassemia major: transplantation or transfusion and chelation. Hematol Oncol Stem Cell Ther 2017;10:290-298.

69. Thompson AA, Walters MC, Kwiatkowski J, et al. Gene therapy in patients with transfusion-dependent β-thalassemia. N Engl J Med 2018;378:1479-1493.

70. Marktel S, Scaramuzza S, Cicalese MP, et al. Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ß-thalassemia. Nat Med 2019;25:234-241.

71. Psatha N, Reik A, Phelps S, et al. Disruption of the BCL11A erythroid enhancer reactivates fetal hemoglobin in erythroid cells of patients with β-thalassemia major. Mol Ther Methods Clin Dev 2018;10:313-326.

72. Antoniani C, Meneghini V, Lattanzi A, et al. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus. Blood 2018;131:1960-1973.

73. Guo S, Casu C, Gardenghi S, et al. Reducing TMPRSS6 ameliorates hemochromatosis and β-thalassemia in mice. J Clin Invest 2013;123:1531-1541.

74. Manolova V, Nyffenegger N, Flace A, et al. Oral ferroportin inhibitor ameliorates ineffective erythropoiesis in a model of β-thalassemia. J Clin Invest 2019;130:491-506.

75. Matte A, Beneduce E, Siciliano A, et al. The pyruvate kinase activator AG-348 improves murine β-thalassemic anemia and corrects ineffective erythropoiesis. Presented at the 21st Congress of the European Hematology Association, Copenhagen, June 9–12, 2016. abstract.

76. Frangoul H, Bobruff Y, Cappellini MD, et al. Safety and efficacy of CTX001 in patients with transfusion-dependent β-thalassemia and sickle cell disease: early results from the Climb THAL-111 and Climb SCD-121 studies of autologous CRISPR-CAS9–modified CD34+ hematopoietic stem and progenitor cells. Blood 2020;136:Suppl 1:3-4. abstract.

77. Frangoul H, Altshuler D, Cappellini MD, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med 2021;384:252-260.

78. Smith AR, Schiller GJ, Vercellotti GM, et al. Preliminary results of a phase 1/2 clinical study of zinc finger nuclease-mediated editing of BCL11A in autologous hematopoietic stem cells for transfusion-dependent beta thalassemia. Blood 2019;134:Suppl 1:3544-3544. abstract.

79. Kuo KHM, Layton DM, Lal A, et al. Proof of concept for the oral pyruvate kinase activator mitapivat in adults with non–transfusion-dependent thalassemia: interim results from an ongoing, phase 2, open-label, multicenterstudy. Presented at the 62nd American Society of Hematology Annual Meeting and Exposition 2020, virtual, December 5–8, 2020:2600. abstract.

服务条款 | 隐私政策 | 联系我们