提示: 手机请竖屏浏览!

“我们所有人”研究计划
The “All of Us” Research Program


The All of Us Research Program Investigators 其他 • 2019.08.15
相关阅读
• 新鲜水果摄入与中国主要心血管疾病的关系

摘要


从观察性队列研究获得的知识极大地推动了疾病的预防和治疗。然而,其中许多队列的规模较小、缺乏多样性或未能提供全面的表型数据。“我们所有人”研究计划将招募由至少100万美国人构成的多样化人群,从而加速生物医学研究和改善健康。该研究计划的目的是使参与者能够获得研究结果,而且目前正在开发用于生成数据、访问数据以及使经过批准的研究者能够广泛获得数据的新方法。“我们所有人”从2018年5月开始招募参与者,目前在340多个招募中心构成的网络中招募18岁或以上的参与者。该研究计划的方案中包括以下要素:健康问卷、电子健康记录(EHR)、身体测量值、数字健康技术以及生物样本的采集和分析。截至2019年7月,已有175,000多名参与者提供了生物样本。其中有80%以上的参与者是来自既往生物医学研究中未得到充分代表的人群。该研究计划已经在34个中心收集了112,000多名参与者的EHR数据。“我们所有人”数据库有助于研究者考虑生活方式、社会经济因素、环境和生物特征的个体差异,从而推进精准诊断、预防和治疗。





作者信息

The All of Us Research Program Investigators
From the Departments of Biomedical Informatics and Medicine, Vanderbilt University Medical Center, Nashville (J.C.D.); the National Center for Advancing Translational Sciences (J.L.R.) and the All of Us Research Program (G.J., E.D.), National Institutes of Health, Bethesda, MD; the Institute for Genomic Medicine and Department of Neurology, Columbia University Irving Medical Center, New York (D.B.G.); and the Broad Institute, Cambridge (A.P., J.W.S.), and the Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston (J.W.S.) — both in Massachusetts. Address reprint requests to Dr. Denny at the Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Ave., Suite 1522, Nashville, TN 37203, or at josh.denny@vumc.org. A complete list of the All of Us Research Program Investigators is provided in the Supplementary Appendix, available at NEJM.org.

 

参考文献

1. Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature 2016;538:161-164.

2. Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 2016;3:160018-160018.

3. Manrai AK, Funke BH, Rehm HL, et al. Genetic misdiagnoses and the potential for health disparities. N Engl J Med 2016;375:655-665.

4. Collins FS, Tabak LA. Policy: NIH plans to enhance reproducibility. Nature 2014;505:612-613.

5. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015;372:793-795.

6. Agency for Healthcare Research and Quality. 2016 National healthcare quality and disparities report (https://www.ahrq.gov/research/findings/nhqrdr/nhqdr16/index.htmlopens in new tab).

7. The Precision Medicine Initiative Cohort Program — building a research foundation for 21st century medicine: Precision Medicine Initiative (PMI) working group report to the advisory committee to the director, NIH. Bethesda, MD: National Institutes of Health, 2015 ((http://www.nih.gov/precisionmedicine/09172015-pmi-working-group-report.pdfopens in new tab).

8. Kaufman DJ, Baker R, Milner LC, Devaney S, Hudson KL. A survey of U.S adults’ opinions about conduct of a nationwide Precision Medicine Initiative cohort study of genes and environment. PLoS One 2016;11(8):e0160461-e0160461.

9. Wilkins CH. Precision medicine for everyone. NEJM Catalyst. February 12, 2018 (https://catalyst.nejm.org/precision-medicine-initiative-everyone/opens in new tab).

10. Cronin RM, Jerome RN, Mapes B, et al. Development of the initial surveys for the All of Us Research Program. Epidemiology 2019;30:597-608.

11. National Institutes of Health. The All of Us Research Program initial protocol. August 4, 2017 (https://allofus.nih.gov/news-events-and-media/announcements/all-us-research-program-initial-protocolopens in new tab).

12. Demographics Research Group. The racial dot map. Charlottesville, VA: Weldon Cooper Center for Public Service, July 2013 (https://demographics.coopercenter.org/racial-dot-map/opens in new tab).

Google Scholaropens in new tab

13. Hripcsak G, Ryan PB, Duke JD, et al. Characterizing treatment pathways at scale using the OHDSI network. Proc Natl Acad Sci U S A 2016;113:7329-7336.

14. Sudlow C, Gallacher J, Allen N, et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 2015;12(3):e1001779-e1001779.

15. Workbench — All of Us research hub (https://www.researchallofus.org/data/workbench/opens in new tab).

16. National Institutes of Health. Genomics Working Group of the All of Us Research Program Advisory Panel (https://allofus.nih.gov/genomics-working-group-all-us-research-program-advisory-panelopens in new tab).

17. Relling MV, Klein TE. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin Pharmacol Ther 2011;89:464-467.

18. Kalia SS, Adelman K, Bale SJ, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med 2017;19:249-255.

19. Dewey FE, Murray MF, Overton JD, et al. Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study. Science 2016;354:aaf6814-1-10-aaf6814-1-10.

20. Van Driest SL, Shi Y, Bowton EA, et al. Clinically actionable genotypes among 10,000 patients with preemptive pharmacogenomic testing. Clin Pharmacol Ther 2014;95:423-431.

21. Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes J III. Factors of risk in the development of coronary heart disease — six year follow-up experience: the Framingham Study. Ann Intern Med 1961;55:33-50.

22. Rosenquist JN, Lehrer SF, O’Malley AJ, Zaslavsky AM, Smoller JW, Christakis NA. Cohort of birth modifies the association between FTO genotype and BMI. Proc Natl Acad Sci U S A 2015;112:354-359.

23. Chambless LE, Heiss G, Folsom AR, et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987-1993. Am J Epidemiol 1997;146:483-494.

24. Hudson KL, Collins FS. The 21st Century Cures Act — a view from the NIH. N Engl J Med 2017;376:111-113.

25. H.R. 34, 114th Cong.: 21st Century Cures Act (2015-2016). Congress.gov (https://www.congress.gov/bill/114th-congress/house-bill/34opens in new tab).

26. Gaziano JM, Concato J, Brophy M, et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J Clin Epidemiol 2016;70:214-223.

27. Chen Z, Chen J, Collins R, et al. China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up. Int J Epidemiol 2011;40:1652-1666.

28. Gottesman O, Kuivaniemi H, Tromp G, et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet Med 2013;15:761-771.

29. Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records. NPJ Digital Med 2018;1(1):18-18.

30. Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep 2016;6:26094-26094.

31. Crawford DC, Crosslin DR, Tromp G, et al. eMERGEing progress in genomics-the first seven years. Front Genet 2014;5:184-184.

32. Galea S, Abdalla SM. Precision medicine approaches and the health of populations: study design concerns and considerations. Perspect Biol Med 2018;61:527-536.

33. Joyner MJ, Paneth N. Seven questions for personalized medicine. JAMA 2015;314:999-1000.

34. Khoury MJ, Evans JP. A public health perspective on a national precision medicine cohort: balancing long-term knowledge generation with early health benefit. JAMA 2015;313:2117-2118.

35. Psaty BM, Dekkers OM, Cooper RS. Comparison of 2 treatment models: precision medicine and preventive medicine. JAMA 2018;320:751-752.

36. Wei W-Q, Leibson CL, Ransom JE, et al. Impact of data fragmentation across healthcare centers on the accuracy of a high-throughput clinical phenotyping algorithm for specifying subjects with type 2 diabetes mellitus. J Am Med Inform Assoc 2012;19:219-224.

37. Kho AN, Pacheco JA, Peissig PL, et al. Electronic medical records for genetic research: results of the eMERGE consortium. Sci Transl Med 2011;3:79re1-79re1.

38. Denny JC, Bastarache L, Ritchie MD, et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol 2013;31:1102-1110.

39. Giri A, Hellwege JN, Keaton JM, et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat Genet 2019;51:51-62.

40. Khoury MJ, Galea S. Will precision medicine improve population health? JAMA 2016;316:1357-1358.

41. Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA 2017;318:1925-1926.

42. Khera AV, Emdin CA, Drake I, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med 2016;375:2349-2358.

服务条款 | 隐私政策 | 联系我们