提示: 手机请竖屏浏览!

野火、全球气候变化和人类健康
Wildfires, Global Climate Change, and Human Health


Rongbin Xu ... 其他 • 2020.11.26
相关阅读
• 孕妇是否易受到热浪伤害

在全球范围内,人类活动导致的气候变化已经造成了许多破坏性影响1。一个生动体现是最近发生的几次大规模野火(有些甚至达到前所未有的规模和持续时间),包括澳大利亚2019—2020年、巴西亚马逊雨林2019年和2020年、美国西部2018年和2020年以及加拿大不列颠哥伦比亚省2017年和2018年发生的野火。今年8月以来,破纪录的野火已沿着美国西海岸烧毁了270万公顷(截至2020年9月18日)土地,造成30多人死亡,数万人无家可归2。强有力的预测表明,世界大多数地区的野火风险将随着气候变化的加剧而持续增加3-6,而火灾将增加因烧伤、野火烟雾和心理健康受影响所导致的超额死亡率和发病率7-9

温室气体大量排放和野火造成的森林损失可能会进一步加速气候变化,并形成不断强化的反馈循环3。本文概述了气候变化背景下的野火状况、目前对野火健康风险的认识和知识缺口,以及制定和执行旨在减小相关健康风险的策略时面临的挑战。





作者信息

Rongbin Xu, M.B., B.S., Pei Yu, M.B., B.S., Michael J. Abramson, M.B., B.S., Ph.D., Fay H. Johnston, B.M., B.S., Ph.D., Jonathan M. Samet, M.D., Michelle L. Bell, Ph.D., Andy Haines, M.B., B.S., M.D., Kristie L. Ebi, Ph.D., M.P.H., Shanshan Li, M.D., Ph.D., and Yuming Guo, M.D., Ph.D.
From the School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC (R.X., P.Y., M.J.A., S.L., Y.G.), and Menzies Institute for Medical Research, University of Tasmania, Hobart (F.H.J.) — both in Australia; the Colorado School of Public Health, University of Colorado, Aurora (J.M.S.); the School of the Environment, Yale University, New Haven, CT (M.L.B.); the Department of Public Health, Environments, and Society and Department of Population Health, Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London (A.H.); and the Center for Health and the Global Environment, University of Washington, Seattle (K.L.E.). Address reprint requests to Dr. Guo at the School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St. Kilda Rd., Melbourne, VIC 3004, Australia, or at yuming.guo@monash.edu, or to Dr. Li at the School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St. Kilda Rd., Melbourne, VIC 3004, Australia, or at shanshan.li@monash.edu.

 

参考文献

1. Masson-Delmotte V, Zhai P, Pörtner H-O, et al. Global warming of 1.5°C: special report. Geneva: Intergovernmental Panel on Climate Change, 2018.

2. California and Oregon 2020 wildfires in maps, graphics and images. BBC News. September 18, 2020 (https://www.bbc.com/news/world-us-canada-54180049. opens in new tab).

3. Bowman DMJS, Kolden CA, Abatzoglou JT, Johnston FH, van der Werf GR, Flannigan M. Vegetation fires in the Anthropocene. Nat Rev Earth Environ 2020;1:500-515.

4. Hurteau MD, Liang S, Westerling AL, Wiedinmyer C. Vegetation-fire feedback reduces projected area burned under climate change. Sci Rep 2019;9:2838-2838.

5. Turco M, Rosa-Cánovas JJ, Bedia J, et al. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat Commun 2018;9:3821-3821.

6. Sun Q, Miao C, Hanel M, et al. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ Int 2019;128:125-136.

7. Finlay SE, Moffat A, Gazzard R, Baker D, Murray V. Health impacts of wildfires. PLoS Curr 2012;4:e4f959951cce2c-e4f959951cce2c.

8. Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. Critical review of health impacts of wildfire smoke exposure. Environ Health Perspect 2016;124:1334-1343.

9. Black C, Tesfaigzi Y, Bassein JA, Miller LA. Wildfire smoke exposure and human health: significant gaps in research for a growing public health issue. Environ Toxicol Pharmacol 2017;55:186-195.

10. Centers for Disease Control and Prevention. Wildfire Smoke: a guide for public health officials: revised 2019. 2019 (https://www.cdc.gov/air/wildfire-smoke/default.htm. opens in new tab).

11. Swain DL, Langenbrunner B, Neelin JD, Hall A. Increasing precipitation volatility in twenty-first-century California. Nat Clim Chang 2018;8:427-433.

12. Wang B, Luo X, Yang YM, et al. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc Natl Acad Sci U S A 2019;116:22512-22517.

13. Zeng Z, Ziegler AD, Searchinger T, et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat Clim Chang 2019;9:979-985.

14. Karnauskas KB, Lundquist JK, Zhang L. Southward shift of the global wind energy resource under high carbon dioxide emissions. Nat Geosci 2018;11:38-43.

15. Finney DL, Doherty RM, Wild O, Stevenson DS, MacKenzie IA, Blyth AM. A projected decrease in lightning under climate change. Nat Clim Chang 2018;8:210-213.

16. Arora VK, Melton JR. Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land. Nat Commun 2018;9:1326-1326.

17. Shaposhnikov D, Revich B, Bellander T, et al. Mortality related to air pollution with the Moscow heat wave and wildfire of 2010. Epidemiology 2014;25:359-364.

18. Brando PM, Soares-Filho B, Rodrigues L, et al. The gathering firestorm in southern Amazonia. Sci Adv 2020;6(2):eaay1632-eaay1632.

19. Cameron PA, Mitra B, Fitzgerald M, et al. Black Saturday: the immediate impact of the February 2009 bushfires in Victoria, Australia. Med J Aust 2009;191:11-16.

20. Domitrovich J, Sharkey BJ. Heat illness basics for wildland firefighters. Washington, DC: Department of Agriculture, Forest Service, Technology & Development Program, June 2010.

21. Belleville G, Ouellet M-C, Morin CM. Post-traumatic stress among evacuees from the 2016 Fort McMurray wildfires: exploration of psychological and sleep symptoms three months after the evacuation. Int J Environ Res Public Health 2019;16:1604-1604.

22. Bryant RA, Gibbs L, Gallagher HC, et al. Longitudinal study of changing psychological outcomes following the Victorian Black Saturday bushfires. Aust N Z J Psychiatry 2018;52:542-551.

23. Brown MRG, Agyapong V, Greenshaw AJ, et al. After the Fort McMurray wildfire there are significant increases in mental health symptoms in grade 7-12 students compared to controls. BMC Psychiatry 2019;19:18-18.

24. McFarlane AC, Van Hooff M. Impact of childhood exposure to a natural disaster on adult mental health: 20-year longitudinal follow-up study. Br J Psychiatry 2009;195:142-148.

25. Gibbs L, Nursey J, Cook J, et al. Delayed disaster impacts on academic performance of primary school children. Child Dev 2019;90:1402-1412.

26. Kollanus V, Tiittanen P, Niemi JV, Lanki T. Effects of long-range transported air pollution from vegetation fires on daily mortality and hospital admissions in the Helsinki metropolitan area, Finland. Environ Res 2016;151:351-358.

27. Urbanski SP, Hao WM, Baker S. Chemical composition of wildland fire emissions. Dev Environ Sci 2009;8:79-108.

28. Tao Z, He H, Sun C, Tong D, Liang X-Z. Impact of fire emissions on U.S. air quality from 1997 to 2016 — a modeling study in the satellite era. Remote Sens 2020;12:913-913.

29. Stockwell CE, Jayarathne T, Cochrane MA, et al. Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmos Chem Phys 2016;16:11711-11732.

30. Kaulfus AS, Nair U, Jaffe D, Christopher SA, Goodrick S. Biomass burning smoke climatology of the United States: implications for particulate matter air quality. Environ Sci Technol 2017;51:11731-11741.

31. Makkonen U, Hellén H, Anttila P, Ferm M. Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006. Sci Total Environ 2010;408:644-651.

32. Vardoulakis S, Jalaludin BB, Morgan GG, Hanigan IC, Johnston FH. Bushfire smoke: urgent need for a national health protection strategy. Med J Aust 2020;212(8):349.e1-353.e1.

33. Verma V, Polidori A, Schauer JJ, Shafer MM, Cassee FR, Sioutas C. Physicochemical and toxicological profiles of particulate matter in Los Angeles during the October 2007 southern California wildfires. Environ Sci Technol 2009;43:954-960.

34. Wong JPS, Tsagkaraki M, Tsiodra I, et al. Effects of atmospheric processing on the oxidative potential of biomass burning organic aerosols. Environ Sci Technol 2019;53:6747-6756.

35. Dong TTT, Hinwood AL, Callan AC, Zosky G, Stock WD. In vitro assessment of the toxicity of bushfire emissions: a review. Sci Total Environ 2017;603-604:268-278.

36. Cascio WE. Wildland fire smoke and human health. Sci Total Environ 2018;624:586-595.

37. Liu C, Chen R, Sera F, et al. Ambient particulate air pollution and daily mortality in 652 cities. N Engl J Med 2019;381:705-715.

38. Lavigne E, Burnett RT, Weichenthal S. Association of short-term exposure to fine particulate air pollution and mortality: effect modification by oxidant gases. Sci Rep 2018;8:16097-16097.

39. Reid CE, Maestas MM. Wildfire smoke exposure under climate change: impact on respiratory health of affected communities. Curr Opin Pulm Med 2019;25:179-187.

40. Borchers Arriagada N, Horsley JA, Palmer AJ, Morgan GG, Tham R, Johnston FH. Association between fire smoke fine particulate matter and asthma-related outcomes: systematic review and meta-analysis. Environ Res 2019;179:108777-108777.

41. DeFlorio-Barker S, Crooks J, Reyes J, Rappold AG. Cardiopulmonary effects of fine particulate matter exposure among older adults, during wildfire and non-wildfire periods, in the United States 2008-2010. Environ Health Perspect 2019;127:37006-37006.

42. Landguth EL, Holden ZA, Graham J, et al. The delayed effect of wildfire season particulate matter on subsequent influenza season in a mountain west region of the USA. Environ Int 2020;139:105668-105668.

43. Yao J, Brauer M, Wei J, McGrail KM, Johnston FH, Henderson SB. Sub-daily exposure to fine particulate matter and ambulance dispatches during wildfire seasons: a case-crossover study in British Columbia, Canada. Environ Health Perspect 2020;128:67006-67006.

44. Kim Y, Knowles S, Manley J, Radoias V. Long-run health consequences of air pollution: evidence from Indonesia’s forest fires of 1997. Econ Hum Biol 2017;26:186-198.

45. Unosson J, Blomberg A, Sandström T, et al. Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans. Part Fibre Toxicol 2013;10:20-20.

46. Reid CE, Considine EM, Watson GL, Telesca D, Pfister GG, Jerrett M. Associations between respiratory health and ozone and fine particulate matter during a wildfire event. Environ Int 2019;129:291-298.

47. Santos LR, Alves-Correia M, Câmara M, et al. Multiple victims of carbon monoxide poisoning in the aftermath of a wildfire: a case series. Acta Med Port 2018;31:146-151.

48. Kondo MC, De Roos AJ, White LS, et al. Meta-analysis of heterogeneity in the effects of wildfire smoke exposure on respiratory health in North America. Int J Environ Res Public Health 2019;16:960-960.

49. Jones CG, Rappold AG, Vargo J, et al. Out-of-hospital cardiac arrests and wildfire-related particulate matter during 2015-2017 California wildfires. J Am Heart Assoc 2020;9(8):e014125-e014125.

50. Mott JA, Mannino DM, Alverson CJ, et al. Cardiorespiratory hospitalizations associated with smoke exposure during the 1997, Southeast Asian forest fires. Int J Hyg Environ Health 2005;208:75-85.

51. Vanos JK. Children’s health and vulnerability in outdoor microclimates: a comprehensive review. Environ Int 2015;76:1-15.

52. Proctor CR, Lee J, Yu D, Shah AD, Whelton AJ. Wildfire caused widespread drinking water distribution network contamination. AWWA Water Sci 2020;2(4):e1183-e1183.

53. Laumbach RJ. Clearing the air on personal interventions to reduce exposure to wildfire smoke. Ann Am Thorac Soc 2019;16:815-818.

54. Lipner EM, O’Dell K, Brey SJ, et al. The associations between clinical respiratory outcomes and ambient wildfire smoke exposure among pediatric asthma patients at National Jewish Health, 2012–2015. Geohealth 2019;3:146-159.

55. Emissions gap report 2019. Nairobi, Kenya: United Nations Environment Programme, November 26, 2019.

56. Haines A, Ebi K. The imperative for climate action to protect health. N Engl J Med 2019;380:263-273.

57. Markandya A, Sampedro J, Smith SJ, et al. Health co-benefits from air pollution and mitigation costs of the Paris Agreement: a modelling study. Lancet Planet Health 2018;2(3):e126-e133.

服务条款 | 隐私政策 | 联系我们