提示: 手机请竖屏浏览!

患者植入前庭植入装置后的姿势、步态、生活质量和听力
Posture, Gait, Quality of Life, and Hearing with a Vestibular Implant


Margaret R. Chow ... 其他 • 2021.02.11
相关阅读
• 听力减退与姿势不稳

内耳植入装置改善前庭功能障碍患者日常平衡和生活质量

 

吴皓

上海交通大学医学院附属第九人民医院耳鼻咽喉头颈外科

 

目前,全球约有180万成年人罹患重度双侧前庭功能障碍,主要表现为慢性平衡障碍、振动幻视、步态不稳甚至跌倒,严重影响了患者生活及身心健康。该病传统治疗主要采用前庭康复锻炼、前庭刺激治疗(声、振动、电刺激等),但这些治疗对步态改善无帮助。

查看更多

摘要


背景

双耳前庭功能低下与慢性平衡障碍、姿势不稳和步态不稳相关,其原因是对眼睛、头部和身体具有稳定作用的前庭反射发生障碍。前庭植入装置可能可以有效缓解症状。

 

方法

患耳毒性(7例参与者)或特发性(1例参与者)双耳前庭功能低下2~23年的患者在单侧植入了人工前庭,该装置可对前庭神经的3个半规管分支产生电刺激。临床结局包括Bruininks-Oseretsky动作熟练度测试(Bruininks-Oseretsky Test of Motor Proficiency)平衡子测试评分(范围,0~36分,评分较高表示平衡能力较好)、改良Romberg测试失败的时间(范围,0~20秒)、动态步态指数(Dynamic Gait Index)评分(范围,0~24分,评分较高表示步态表现较好)、完成起立行走计时测试(Timed Up and Go test)所需的时间、步行速度、纯音听阈、言语识别率得分和生活质量。我们比较了基线(植入前)、6个月(8例参与者)和1年时(6例参与者)参与者的结果,装置设定为常规治疗模式(采用变化的刺激脉冲频率和幅度来代表头部转动)和安慰剂模式(脉冲频率和幅度保持恒定)。

 

结果

基线时和6个月时,Bruininks-Oseretsky测试的中位评分分别为17.5分和21.0分(中位参与者自身差异,5.5分;95%置信区间[CI],0~10.0);改良Romberg测试的中位时间分别为3.6秒和8.3秒(差异,5.1;95% CI,1.5~27.6);动态步态指数的中位评分分别为12.5分和22.5分(差异,10.5分;95% CI,1.5~12.0);起立行走计时测试的中位时间分别为11.0秒和8.7秒(差异,2.3;95% CI,-1.7~5.0);步行速度测试的中位速度分别为1.03 m/s和1.10 m/s(差异,0.13;95% CI,-0.25~0.30)。安慰剂模式测试证实,改善是由治疗模式刺激引起。在1年时也接受了评估的6例参与者中,从基线至1年的中位参与者自身变化通常与6个月时的结果一致。装置植入引起了同侧听力损失,6个月时,5例参与者的纯音气导平均听阈提高了3~16 dB,3例参与者提高了74~104 dB。参与者报告的失能和生活质量变化情况与姿势和步态变化情况一致。

 

结论

因双耳前庭功能低下而在单侧植入人工前庭后6个月和1年时,姿势、步态和生活质量指标相对于基线一般有所改善,但除1例参与者之外,其他所有参与者植入人工前庭的一侧耳出现听力下降(由美国国立卫生研究院等资助,在ClinicalTrials.gov注册号为NCT02725463)。





作者信息

Margaret R. Chow, B.S., Andrianna I. Ayiotis, B.S., Desi P. Schoo, M.D., Yoav Gimmon, P.T., Ph.D., Kelly E. Lane, R.V.T., Brian J. Morris, B.S., Mehdi A. Rahman, M.S., Nicolas S. Valentin, M.S., Peter J. Boutros, Ph.D., Stephen P. Bowditch, Au.D., Bryan K. Ward, M.D., Daniel Q. Sun, M.D., Carolina Treviño Guajardo, M.D., Michael C. Schubert, P.T., Ph.D., John P. Carey, M.D., and Charles C. Della Santina, M.D., Ph.D.
From the Departments of Otolaryngology–Head and Neck Surgery (M.R.C., A.I.A., D.P.S., Y.G., K.E.L., B.J.M., P.J.B., S.P.B., B.K.W., D.Q.S., C.T.G., M.C.S., J.P.C., C.C.D.S.) and Biomedical Engineering (M.R.C., A.I.A., B.J.M., P.J.B., C.C.D.S.), Johns Hopkins University School of Medicine, and Labyrinth Devices (M.A.R., N.S.V., C.C.D.S.) — both in Baltimore. Address reprint requests to Dr. Della Santina at 720 Rutland Ave., Ross Bldg., Rm. 826, Baltimore, MD 21205, or at cds@jhmi.edu.

 

参考文献

1. Living without a balancing mechanism. N Engl J Med 1952;246:458-460.

2. Ward BK, Agrawal Y, Hoffman HJ, Carey JP, Della Santina CC. Prevalence and impact of bilateral vestibular hypofunction: results from the 2008 US National Health Interview Survey. JAMA Otolaryngol Head Neck Surg 2013;139:803-810.

3. Sun DQ, Ward BK, Semenov YR, Carey JP, Della Santina CC. Bilateral vestibular deficiency: quality of life and economic implications. JAMA Otolaryngol Head Neck Surg 2014;140:527-534.

4. Honegger F, Hillebrandt IM, van den Elzen NGA, Tang K-S, Allum JH. The effect of prosthetic feedback on the strategies and synergies used by vestibular loss subjects to control stance. J Neuroeng Rehabil 2013;10:115-115.

5. Sienko KH, Whitney SL, Carender WJ, Wall C. The role of sensory augmentation for people with vestibular deficits: real-time balance aid and/or rehabilitation device? J Vestib Res 2017;27:63-76.

6. Fitzpatrick RC, Day BL. Probing the human vestibular system with galvanic stimulation. J Appl Physiol (1985) 2004;96:2301-2316.

7. Barros CGC, Bittar RSM, Danilov Y. Effects of electrotactile vestibular substitution on rehabilitation of patients with bilateral vestibular loss. Neurosci Lett 2010;476:123-126.

8. Sluydts M, Curthoys I, Vanspauwen R, et al. Electrical vestibular stimulation in humans: a narrative review. Audiol Neurootol 2020;25:6-24.

9. Merfeld DM, Lewis RF. Replacing semicircular canal function with a vestibular implant. Curr Opin Otolaryngol Head Neck Surg 2012;20:386-392.

10. Rubinstein JT, Ling L, Nowack A, Nie K, Phillips JO. Results from a second-generation vestibular implant in human subjects: diagnosis may impact electrical sensitivity of vestibular afferents. Otol Neurotol 2020;41:68-77.

11. Guyot J-P, Perez Fornos A. Milestones in the development of a vestibular implant. Curr Opin Neurol 2019;32:145-153.

12. Guinand N, van de Berg R, Cavuscens S, et al. Vestibular implants: 8 years of experience with electrical stimulation of the vestibular nerve in 11 patients with bilateral vestibular loss. ORL J Otorhinolaryngol Relat Spec 2015;77:227-240.

13. Boutros PJ, Schoo DP, Rahman M, et al. Continuous vestibular implant stimulation partially restores eye-stabilizing reflexes. JCI Insight 2019;4(22):e128397-e128397.

14. Strupp M, Kim J-S, Murofushi T, et al. Bilateral vestibulopathy: diagnostic criteria consensus document of the classification committee of the Bárány Society. J Vestib Res 2017;27:177-189.

15. Wright A, Hannon J, Hegedus EJ, Kavchak AE. Clinimetrics corner: a closer look at the minimal clinically important difference (MCID). J Man Manip Ther 2012;20:160-166.

16. Bruininks RH, Bruininks BD. Bruininks-Oseretsky test of motor proficiency, second edition. London: Pearson, 2005.

17. Agrawal Y, Carey JP, Hoffman HJ, Sklare DA, Schubert MC. The modified Romberg Balance Test: normative data in U.S. adults. Otol Neurotol 2011;32:1309-1311.

18. Vereeck L, Wuyts F, Truijen S, Van de Heyning P. Clinical assessment of balance: normative data, and gender and age effects. Int J Audiol 2008;47:67-75.

19. Shumaway-Cook A, Woollacott M. Motor control: theory and practical applications. Baltimore: Williams & Wilkins, 1995.

20. Herman T, Inbar-Borovsky N, Brozgol M, Giladi N, Hausdorff JM. The Dynamic Gait Index in healthy older adults: the role of stair climbing, fear of falling and gender. Gait Posture 2009;29:237-241.

21. Centers for Disease Control and Prevention. Timed Up & Go (TUG). 2017 (https://www.cdc.gov/steadi/pdf/TUG_Test-print.pdf. opens in new tab).

22. Bischoff HA, Stähelin HB, Monsch AU, et al. Identifying a cut-off point for normal mobility: a comparison of the timed ‘up and go’ test in community-dwelling and institutionalised elderly women. Age Ageing 2003;32:315-320.

23. Ibrahim A, Singh DKA, Shahar S. ‘Timed Up and Go’ test: age, gender and cognitive impairment stratified normative values of older adults. PLoS One 2017;12(10):e0185641-e0185641.

24. Brach JS, Perera S, Studenski S, Newman AB. The reliability and validity of measures of gait variability in community-dwelling older adults. Arch Phys Med Rehabil 2008;89:2293-2296.

25. Jacobson GP, Newman CW. The development of the Dizziness Handicap Inventory. Arch Otolaryngol Head Neck Surg 1990;116:424-427.

26. Cohen HS. Use of the Vestibular Disorders Activities of Daily Living Scale to describe functional limitations in patients with vestibular disorders. J Vestib Res 2014;24:33-38.

27. Cohen HS, Kimball KT. Development of the Vestibular Disorders Activities of Daily Living Scale. Arch Otolaryngol Head Neck Surg 2000;126:881-887.

28. Cohen HS, Kimball KT, Adams AS. Application of the Vestibular Disorders Activities of Daily Living Scale. Laryngoscope 2000;110:1204-1209.

29. Jenkinson C, Coulter A, Wright L. Short form 36 (SF36) health survey questionnaire: normative data for adults of working age. BMJ 1993;306:1437-1440.

30. Lins L, Carvalho FM. SF-36 total score as a single measure of health-related quality of life: scoping review. SAGE Open Med 2016;4:2050312116671725-2050312116671725.

31. Brazier J, Roberts J, Deverill M. The estimation of a preference-based measure of health from the SF-36. J Health Econ 2002;21:271-292.

32. Ara R, Brazier J. Predicting the short form-6D preference-based index using the eight mean short form-36 health dimension scores: estimating preference-based health-related utilities when patient level data are not available. Value Health 2009;12:346-353.

33. Horsman J, Furlong W, Feeny D, Torrance G. The Health Utilities Index (HUI): concepts, measurement properties and applications. Health Qual Life Outcomes 2003;1:54-54.

34. Fryback DG, Dunham NC, Palta M, et al. US norms for six generic health-related quality-of-life indexes from the National Health Measurement study. Med Care 2007;45:1162-1170.

35. Peterson GE, Lehiste I. Revised CNC lists for auditory tests. J Speech Hear Disord 1962;27:62-70.

36. Spahr AJ, Dorman MF, Litvak LM, et al. Development and validation of the AzBio sentence lists. Ear Hear 2012;33:112-117.

37. Nguyen KD, Welgampola MS, Carey JP. Test-retest reliability and age-related characteristics of the ocular and cervical vestibular evoked myogenic potential tests. Otol Neurotol 2010;31:793-802.

38. Campbell MJ, Gardner MJ. Calculating confidence intervals for some non-parametric analyses. Br Med J (Clin Res Ed) 1988;296:1454-1456.

39. Iversen MM, Zhu H, Zhou W, Della Santina CC, Carey JP, Rabbitt RD. Sound abnormally stimulates the vestibular system in canal dehiscence syndrome by generating pathological fluid-mechanical waves. Sci Rep 2018;8:10257-10257.

40. Ward BK, Carey JP, Minor LB. Superior canal dehiscence syndrome: lessons from the first 20 years. Front Neurol 2017;8:177-177.

服务条款 | 隐私政策 | 联系我们