提示: 手机请竖屏浏览!

用于营养不良儿童的微生物群导向性食物干预措施
A Microbiota-Directed Food Intervention for Undernourished Children


Robert Y. Chen ... 妇产科和儿科 • 2021.04.22
相关阅读
• 益生菌对肠道菌群的复杂影响

摘要


背景

全世界有3,000多万儿童患中度急性营养不良。现有疗法的效果有限,而我们对该病的发病机制仍有很多未知。中度急性营养不良儿童的肠道微生物群发育出现紊乱。

 

方法

在本研究中,我们向孟加拉国123名居住在贫民窟的12~18月龄中度急性营养不良儿童提供了微生物群导向性辅食原型(MDCF-2)或即食辅食(RUSF)。本试验在3个月期间每日给予儿童2次辅食,之后监测1个月。我们在基线时获取了身长别体重、年龄别体重和年龄别身长的z评分以及上臂中点臂围值,并在干预期间(每2周1次)和4个月时获取了这些数据。我们在基线和3个月之间以及基线和4个月之间比较了这些相关表型的变化速度。我们还测定了血浆中4,977种蛋白质和粪便样本中209个细菌类群的水平。

 

结果

共计118名儿童(每组59名)完成了干预。在研究期间(包括1个月随访),身长别体重和年龄别体重z评分的变化速度与MDCF-2对生长的益处一致。接受MDCF-2与和身长别体重z评分正相关的70种血浆蛋白和21个相关细菌类群水平的变化幅度相关(蛋白质和细胞类群比较均P<0.001)。这些蛋白质包括介导骨骼生长和神经发育的蛋白质。

 

结论

这些结果支持将MDCF-2作为中度急性营养不良幼童的辅食,并帮助我们了解了靶向影响微生物群成分可能与生长相关的机制(由比尔及梅琳达·盖茨基金会[Bill and Melinda Gates Foundation]和美国国立卫生研究院资助,在ClinicalTrials.gov注册号为NCT04015999)。





作者信息

Robert Y. Chen, B.S., Ishita Mostafa, B.D.S., M.P.H., Matthew C. Hibberd, Ph.D., Subhasish Das, M.B., B.S., M.P.H., Mustafa Mahfuz, M.B., B.S., M.P.H., Nurun N. Naila, M.B., B.S., M.P.H., M. Munirul Islam, M.B., B.S., Ph.D., Sayeeda Huq, M.B., B.S., M.P.H., M. Ashraful Alam, M.P.H., Mahabub U. Zaman, M.P.H., Arjun S. Raman, M.D., Ph.D., Daniel Webber, M.D., Ph.D., Cyrus Zhou, B.S., Vinaik Sundaresan, B.S., Kazi Ahsan, M.B., B.S., M.P.H., Martin F. Meier, B.S., Michael J. Barratt, Ph.D., Tahmeed Ahmed, M.B., B.S., Ph.D., and Jeffrey I. Gordon, M.D.
From the Edison Family Center for Genome Sciences and Systems Biology (R.Y.C., M.C.H., A.S.R., D.W., C.Z., V.S., K.A., M.F.M., M.J.B., J.I.G.), the Center for Gut Microbiome and Nutrition Research (R.Y.C., M.C.H., A.S.R., D.W., C.Z., V.S., K.A., M.F.M., M.J.B., J.I.G.), and the Department of Pathology and Immunology (M.C.H., A.S.R., D.W., M.J.B., J.I.G.), Washington University School of Medicine, St. Louis; and the International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh (I.M., S.D., M.M., N.N.N., M.M.I., S.H., M.A.A., M.U.Z., T.A.). Address reprint requests to Dr. Gordon at the Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Ave., Campus Box 8510, St. Louis, MO 63110, or at jgordon@wustl.edu.

 

参考文献

1. Black RE, Allen LH, Bhutta ZA, et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 2008;371:243-260.

2. Black RE, Victora CG, Walker SP, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013;382:427-451.

3. WHO Multicentre Growth Reference Study Group. WHO child growth standards: growth velocity based on weight, length and head circumference: methods and development. Geneva: World Health Organization, 2009 (https://apps.who.int/iris/bitstream/handle/10665/44026/9789241547635_eng.pdf. opens in new tab).

4. Subramanian S, Huq S, Yatsunenko T, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 2014;510:417-421.

5. Raman AS, Gehrig JL, Venkatesh S, et al. A sparse covarying unit that describes healthy and impaired human gut microbiota development. Science 2019;365:eaau4735-eaau4735.

6. Dewey KG. Reducing stunting by improving maternal, infant and young child nutrition in regions such as South Asia: evidence, challenges and opportunities. Matern Child Nutr 2016;12:Suppl 1:27-38.

7. Goudet SM, Bogin BA, Madise NJ, Griffiths PL. Nutritional interventions for preventing stunting in children (birth to 59 months) living in urban slums in low- and middle-income countries (LMIC). Cochrane Database Syst Rev 2019;6:CD011695-CD011695.

8. Gehrig JL, Venkatesh S, Chang H-W, et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 2019;365:eaau4732-eaau4732.

9. Roberton T, Carter ED, Chou VB, et al. Early estimates of the indirect effects of the COVID-19 pandemic on maternal and child mortality in low-income and middle-income countries: a modelling study. Lancet Glob Health 2020;8(7):e901-e908.

10. Blanton LV, Charbonneau MR, Salih T, et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 2016;351(6275):aad3311-aad3311.

11. Mostafa I, Nahar NN, Islam M, et al. Proof-of-concept study of the efficacy of a microbiota-directed complementary food formulation (MDCF) for treating moderate acute malnutrition. BMC Public Health 2020;20:242-242.

12. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015;43(7):e47-e47.

13. Sergushichev AA. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. June 20, 2016 (https://www.biorxiv.org/content/10.1101/060012v1. opens in new tab). preprint.

14. Gold L, Ayers D, Bertino J, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 2010;5(12):e15004-e15004.

15. Burger A, Roosenboom J, Hossain M, Weinberg SM, Hecht JT, Posey KL. Mutant COMP shapes growth and development of skull and facial structures in mice and humans. Mol Genet Genomic Med 2020;8(7):e1251-e1251.

16. Bjarnason R, Andersson B, Kim HS, et al. Cartilage oligomeric matrix protein increases in serum after the start of growth hormone treatment in prepubertal children. J Clin Endocrinol Metab 2004;89:5156-5160.

17. Chen K, Ng PY, Chen R, et al. Sfrp4 repression of the Ror2/Jnk cascade in osteoclasts protects cortical bone from excessive endosteal resorption. Proc Natl Acad Sci U S A 2019;116:14138-14143.

18. Kim H, Choi Y-J, Lee Y-S, et al. SLIT3 regulates endochondral ossification by β-catenin suppression in chondrocytes. Biochem Biophys Res Commun 2018;506:847-853.

19. Diamond MS, Farzan M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat Rev Immunol 2013;13:46-57.

20. Bernardo BC, Belluoccio D, Rowley L, Little CB, Hansen U, Bateman JF. Cartilage intermediate layer protein 2 (CILP-2) is expressed in articular and meniscal cartilage and down-regulated in experimental osteoarthritis. J Biol Chem 2011;286:37758-37767.

21. Stenina-Adognravi O, Plow EF. Thrombospondin-4 in tissue remodeling. Matrix Biol 2019;75-76:300-313.

22. Sawaya AL, Martins P, Hoffman D, Roberts SB. The link between childhood undernutrition and risk of chronic diseases in adulthood: a case study of Brazil. Nutr Rev 2003;61:168-175.

23. Popkin BM, Corvalan C, Grummer-Strawn LM. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 2020;395:65-74.

24. Wu T, Zhang Q, Wu S, et al. CILP-2 is a novel secreted protein and associated with insulin resistance. J Mol Cell Biol 2019;11:1083-1094.

25. Willer CJ, Sanna S, Jackson AU, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 2008;40:161-169.

26. Saxena R, Elbers CC, Guo Y, et al. Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci. Am J Hum Genet 2012;90:410-425.

27. Rzehak P, Covic M, Saffery R, et al. DNA-methylation and body composition in preschool children: epigenome-wide-analysis in the European Childhood Obesity Project (CHOP) study. Sci Rep 2017;7:14349-14349.

28. Brix JM, Krzizek EC, Hoebaus C, Ludvik B, Schernthaner G, Schernthaner GH. Secreted frizzled-related protein 4 (SFRP4) is elevated in patients with diabetes mellitus. Horm Metab Res 2016;48:345-348.

29. Hoffmann MM, Werner C, Böhm M, Laufs U, Winkler K. Association of secreted frizzled-related protein 4 (SFRP4) with type 2 diabetes in patients with stable coronary artery disease. Cardiovasc Diabetol 2014;13:155-155.

30. Zierfuss B, Höbaus C, Herz CT, Pesau G, Koppensteiner R, Schernthaner G-H. Thrombospondin-4 increases with the severity of peripheral arterial disease and is associated with diabetes. Heart Vessels 2020;35:52-58.

31. Conlisk AJ, Barnhart HX, Martorell R, Grajeda R, Stein AD. Maternal and child nutritional supplementation are inversely associated with fasting plasma glucose concentration in young Guatemalan adults. J Nutr 2004;134:890-897.

32. Kinra S, Rameshwar Sarma KV, Ghafoorunissa G, et al. Effect of integration of supplemental nutrition with public health programmes in pregnancy and early childhood on cardiovascular risk in rural Indian adolescents: long term follow-up of Hyderabad nutrition trial. BMJ 2008;337:a605-a605.

33. Abera M, Tesfaye M, Admassu B, et al. Body composition during early infancy and developmental progression from 1 to 5 years of age: the Infant Anthropometry and Body Composition (iABC) cohort study among Ethiopian children. Br J Nutr 2018;119:1263-1273.

34. Olsen MF, Iuel-Brockdorff A-S, Yaméogo CW, et al. Early development in children with moderate acute malnutrition: a cross-sectional study in Burkina Faso. Matern Child Nutr 2020;16(2):e12928-e12928.

服务条款 | 隐私政策 | 联系我们