提示: 手机请竖屏浏览!

接种ChAdOx1 nCoV-19疫苗后的抗血小板因子4病理性抗体
Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination


Marie Scully ... 呼吸系统疾病 • 2021.06.10
相关阅读
• 美国加利福尼亚州医护人员接种疫苗后的SARS-CoV-2感染情况 • 一家医疗中心接种SARS-CoV-2疫苗后的效力早期证据

摘要


背景

COVID-19疫情的主要控制手段是接种预防SARS-CoV-2感染的疫苗。在1年内,已有数种疫苗研发成功并接种数百万剂。报告不良事件是疫苗上市后的一项重要工作。

 

方法

本文报道了在接种第一剂ChAdOx1 nCoV-19疫苗(阿斯利康)后6~24日出现血栓形成和血小板减少的23例患者的情况。根据这些患者的临床和实验室特征,我们发现了一种新的潜在机制,并阐明了其对治疗方案的影响。

 

结果

在既往无高凝内科疾病的情况下,22例患者出现了急性血小板减少和血栓形成,主要是脑静脉血栓形成,另有1例患者出现了孤立性血小板减少和出血表型。所有患者就诊时的纤维蛋白原水平均偏低或正常,d-二聚体水平升高。未发现血栓形成倾向或致病诱因。22例患者的血小板因子4(PF4)抗体检测结果为阳性(1例的结果不明确),1例患者的PF4抗体检测结果为阴性。根据在这些患者中观察到的病理生理特征,我们建议避免输入血小板,因为血栓症状有进展的风险,并且建议在上述症状首次出现时考虑使用非肝素抗凝剂和静脉输入免疫球蛋白。

 

结论

接种预防SARS-CoV-2感染的疫苗对于控制COVID-19疫情仍然至关重要。接种ChAdOx1 nCoV-19疫苗后可能发生与使用肝素无关的致病性PF4依赖综合征。由于影响治疗方案,迅速诊断这一罕见综合征非常重要。





作者信息

Marie Scully, M.D., Deepak Singh, B.Sc., Robert Lown, M.D., Anthony Poles, M.D., Tom Solomon, M.D., Marcel Levi, M.D., David Goldblatt, M.D., Ph.D., Pavel Kotoucek, M.D., William Thomas, M.D., and William Lester, M.D.
From the Department of Haematology, University College London Hospitals NHS Foundation Trust (M.S., M.L.), National Institute for Health Research University College London Hospitals Biomedical Research Centre (M.S., M.L.), Special Coagulation, Health Services Laboratories (D.S.), Great Ormond Street Institute of Child Health, University College London (D.G.), and National Institute for Health Research Great Ormond Street Biomedical Research Centre (D.G.), London, the Department of Haematology, University Hospital Southampton, Southampton (R.L.), National Health Service Blood and Transplant, Bristol (A.P.), National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool (T.S.), the Department of Haematology, Mid Essex Hospitals, Chelmsford (P.K.), the Department of Haematology, Addenbrookes Hospital, Cambridge (W.T.), and the Department of Haematology, University Hospitals Birmingham, and Institute of Cardiovascular Sciences, University of Birmingham, Birmingham (W.L.) — all in the United Kingdom; and the Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam (M.L.). Address reprint requests to Prof. Scully at the Department of Haematology, University College London Hospitals NHS Foundation Trust, 250 Euston Rd., London NW1 2PG, United Kingdom, or at m.scully@ucl.ac.uk.

 

参考文献

1. Price-Haywood EG, Burton J, Fort D, Seoane L. Hospitalization and mortality among Black patients and White patients with Covid-19. N Engl J Med 2020;382:2534-2543.

2. Grasselli G, Greco M, Zanella A, et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy. JAMA Intern Med 2020;180:1345-1355.

3. Johns Hopkins Coronavirus Disease Resource Center. April 2021 (https://coronavirus.jhu.edu.).

4. Hodgson SH, Mansatta K, Mallett G, Harris V, Emary KRW, Pollard AJ. What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. Lancet Infect Dis 2021;21(2):e26-e35.

5. Izda V, Jeffries MA, Sawalha AH. COVID-19: a review of therapeutic strategies and vaccine candidates. Clin Immunol 2021;222:108634-108634.

6. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med 2021;384:2092-2101.

7. Schultz NH, Sørvoll IH, Michelsen AE. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med 2021;384:2124-2130.

8. Government of the United Kingdom. UK regulator confirms that people should continue to receive the COVID-19 vaccine AstraZeneca. March 18, 2021 (https://www.gov.uk/government/news/uk-regulator-confirms-that-people-should-continue-to-receive-the-covid-19-vaccine-astrazeneca.).

9. European Medicines Agency. COVID-19 vaccine AstraZeneca: benefits still outweigh the risks despite possible link to rare blood clots with low blood platelets. March 18, 2021 (https://www.ema.europa.eu/en/news/covid-19-vaccine-astrazeneca-benefits-still-outweigh-risks-despite-possible-link-rare-blood-clots.).

10. Liederman Z, Van Cott EM, Smock K, Meijer P, Selby R. Heparin-induced thrombocytopenia: an international assessment of the quality of laboratory testing. J Thromb Haemost 2019;17:2123-2130.

11. Garritsen HS, Probst-Kepper M, Legath N, et al. High sensitivity and specificity of a new functional flow cytometry assay for clinically significant heparin-induced thrombocytopenia antibodies. Int J Lab Hematol 2014;36:135-143.

12. Johnson M, Wagstaffe HR, Gilmour KC, et al. Evaluation of a novel multiplexed assay for determining IgG levels and functional activity to SARS-CoV-2. J Clin Virol 2020;130:104572-104572.

13. Bjøri E, Johnsen HS, Hansen J-B, Braekkan SK. D-dimer at venous thrombosis diagnosis is associated with risk of recurrence. J Thromb Haemost 2017;15:917-924.

14. Paneesha S, Cheyne E, French K, Bacchu S, Borg A, Rose P. High D-dimer levels at presentation in patients with venous thromboembolism is a marker of adverse clinical outcomes. Br J Haematol 2006;135:85-90.

15. Warkentin TE. Clinical picture of heparin-induced thrombocytopenia (HIT) and its differentiation from non-HIT thrombocytopenia. Thromb Haemost 2016;116:813-822.

16. Juhl D, Eichler P, Lubenow N, Strobel U, Wessel A, Greinacher A. Incidence and clinical significance of anti-PF4/heparin antibodies of the IgG, IgM, and IgA class in 755 consecutive patient samples referred for diagnostic testing for heparin-induced thrombocytopenia. Eur J Haematol 2006;76:420-426.

17. Selleng S, Selleng K, Friesecke S, et al. Prevalence and clinical implications of anti-PF4/heparin antibodies in intensive care patients: a prospective observational study. J Thromb Thrombolysis 2015;39:60-67.

18. Hwang SR, Wang Y, Weil EL, Padmanabhan A, Warkentin TE, Pruthi RK. Cerebral venous sinus thrombosis associated with spontaneous heparin-induced thrombocytopenia syndrome after total knee arthroplasty. Platelets 2020 October 1 (Epub ahead of print).

19. Warkentin TE, Makris M, Jay RM, Kelton JG. A spontaneous prothrombotic disorder resembling heparin-induced thrombocytopenia. Am J Med 2008;121:632-636.

20. Rice L, Attisha WK, Drexler A, Francis JL. Delayed-onset heparin-induced thrombocytopenia. Ann Intern Med 2002;136:210-215.

21. Mohanty E, Nazir S, Sheppard J-AI, Forman DA, Warkentin TE. High-dose intravenous immunoglobulin to treat spontaneous heparin-induced thrombocytopenia syndrome. J Thromb Haemost 2019;17:841-844.

22. Warkentin TE. High-dose intravenous immunoglobulin for the treatment and prevention of heparin-induced thrombocytopenia: a review. Expert Rev Hematol 2019;12:685-698.

23. Irani M, Siegal E, Jella A, Aster R, Padmanabhan A. Use of intravenous immunoglobulin G to treat spontaneous heparin-induced thrombocytopenia. Transfusion 2019;59:931-934.

24. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021;397:99-111.

服务条款 | 隐私政策 | 联系我们