提示: 手机请竖屏浏览!

CRISPR-Cas9体内基因编辑方法治疗转甲状腺素蛋白淀粉样变性
CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis


Julian D. Gillmore ... 其他 • 2021.08.05
相关阅读
• tafamidis治疗甲状腺素运载蛋白淀粉样变心肌病患者

体内CRISPR基因编辑首次成功治疗转甲状腺素蛋白淀粉样变性

 

陈启龙†,许东升‡*

†上海中医药大学交叉科学研究院;‡上海中医药大学康复医学院;‡上海中医药大学康复医学研究所

*通讯作者

 

2021年8月5日,《新英格兰医学杂志》(NEJM)报道了通过体内CRISPR-Cas9基因编辑技术治疗转甲状腺素蛋白淀粉样变性(transthyretin amyloidosis,ATTR),研究结果非常振奋人心1

查看更多

摘要


背景

转甲状腺素蛋白淀粉样变性(又称ATTR淀粉样变性)是一种危及生命的疾病,其特征是错误折叠的转甲状腺素蛋白(TTR)在组织(主要是神经和心脏)内进行性累积。NTLA-2001是一种体内基因编辑治疗剂,旨在通过降低血清TTR浓度的方式治疗ATTR淀粉样变性。它是基于规律成簇的间隔短回文重复序列和相关Cas9核酸内切酶(CRISPR-Cas9)系统,由含有Cas9蛋白信使RNA和靶向TTR的单向导RNA的脂质纳米颗粒组成。

 

方法

进行临床前体外和体内研究之后,在一项进行中的1期临床研究中,我们在6例遗传性ATTR淀粉样变性合并多发性神经病患者中评估了递增剂量NTLA-2001单次给药的安全性和药效学作用,两个初始剂量组(0.1 mg/kg和0.3 mg/kg)各3例患者。

 

结果

临床前研究表明,单次给药可持久敲除TTR。我们在患者输入NTLA-2001后28日内进行的系列安全性评估显示,不良事件很少,而且为轻度。我们观察到剂量依赖性药效学作用。第28日时,0.1 mg/kg剂量组的血清TTR蛋白浓度相对于基线的平均降幅为52%(范围,47~56),0.3 mg/kg剂量组的降幅为87%(范围,80~96)。

 

结论

NTLA-2001用于少数几例遗传性ATTR淀粉样变性合并多发性神经病患者之后仅发生了轻度不良事件,并且通过靶向敲除TTR的方式降低了血清TTR蛋白浓度(由Intellia Therapeutics和再生元制药[Regeneron Pharmaceuticals]资助,在ClinicalTrials.gov注册号为NCT04601051)。





作者信息

Julian D. Gillmore, M.D., Ph.D., Ed Gane, M.B., Ch.B., Jorg Taubel, M.D., Justin Kao, M.B., Ch.B., Marianna Fontana, M.D., Ph.D., Michael L. Maitland, M.D., Ph.D., Jessica Seitzer, B.S., Daniel O’Connell, Ph.D., Kathryn R. Walsh, Ph.D., Kristy Wood, Ph.D., Jonathan Phillips, Ph.D., Yuanxin Xu, M.D., Ph.D., Adam Amaral, B.A., Adam P. Boyd, Ph.D., Jeffrey E. Cehelsky, M.B.A., Mark D. McKee, M.D., Andrew Schiermeier, Ph.D., Olivier Harari, M.B., B.Chir., Ph.D., Andrew Murphy, Ph.D., Christos A. Kyratsous, Ph.D., Brian Zambrowicz, Ph.D., Randy Soltys, Ph.D., David E. Gutstein, M.D., John Leonard, M.D., Laura Sepp-Lorenzino, Ph.D., and David Lebwohl, M.D.
From the National Amyloidosis Centre, Division of Medicine, University College London, Royal Free Hospital (J.D.G., M.F.) and Richmond Pharmacology, St. George’s University of London (J.T.) — both in London; New Zealand Clinical Research (E.G.), University of Auckland (E.G.), and the Department of Neurology, Auckland City Hospital (J.K.) — all in Auckland, New Zealand; Intellia Therapeutics, Cambridge, MA (M.L.M., J.S., D.O., K.R.W., K.W., J.P., Y.X., A.A., A.P.B., J.E.C., M.D.M., A.S., J.L., L.S.-L., D.L.); and Regeneron Pharmaceuticals, Tarrytown, NY (O.H., A.M., C.A.K., B.Z., R.S., D.E.G.). Address reprint requests to Prof. Gillmore at the Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Hospital, Rowland Hill St., London NW3 2PF, United Kingdom, or at j.gillmore@ucl.ac.uk.

 

参考文献

1. Marcoux J, Mangione PP, Porcari R, et al. A novel mechano-enzymatic cleavage mechanism underlies transthyretin amyloidogenesis. EMBO Mol Med 2015;7:1337-1349.

2. Gertz MA, Benson MD, Dyck PJ, et al. Diagnosis, prognosis, and therapy of transthyretin amyloidosis. J Am Coll Cardiol 2015;66:2451-2466.

3. Ando Y, Coelho T, Berk JL, et al. Guideline of transthyretin-related hereditary amyloidosis for clinicians. Orphanet J Rare Dis 2013;8:31-31.

4. Hawkins PN, Ando Y, Dispenzeri A, Gonzalez-Duarte A, Adams D, Suhr OB. Evolving landscape in the management of transthyretin amyloidosis. Ann Med 2015;47:625-638.

5. Schmidt HH, Waddington-Cruz M, Botteman MF, et al. Estimating the global prevalence of transthyretin familial amyloid polyneuropathy. Muscle Nerve 2018;57:829-837.

6. Dohrn MF, Ihne S, Hegenbart U, et al. Targeting transthyretin — mechanism-based treatment approaches and future perspectives in hereditary amyloidosis. J Neurochem 2021;156:802-818.

7. Maurer MS, Bokhari S, Damy T, et al. Expert consensus recommendations for the suspicion and diagnosis of transthyretin cardiac amyloidosis. Circ Heart Fail 2019;12(9):e006075-e006075.

8. Merlini G, Coelho T, Waddington Cruz M, Li H, Stewart M, Ebede B. Evaluation of mortality during long-term treatment with tafamidis for transthyretin amyloidosis with polyneuropathy: clinical trial results up to 8.5 years. Neurol Ther 2020;9:105-115.

9. Maurer MS, Schwartz JH, Gundapaneni B, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 2018;379:1007-1016.

10. Berk JL, Suhr OB, Obici L, et al. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA 2013;310:2658-2667.

11. Benson MD, Waddington-Cruz M, Berk JL, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 2018;379:22-31.

12. Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 2018;379:11-21.

13. Adams D, Polydefkis M, González-Duarte A, et al. Long-term safety and efficacy of patisiran for hereditary transthyretin-mediated amyloidosis with polyneuropathy: 12-month results of an open-label extension study. Lancet Neurol 2021;20:49-59.

14. Solomon SD, Adams D, Kristen A, et al. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation 2019;139:431-443.

15. Urits I, Swanson D, Swett MC, et al. A review of patisiran (ONPATTRO) for the treatment of polyneuropathy in people with hereditary transthyretin amyloidosis. Neurol Ther 2020;9:301-315.

16. Lozeron P, Théaudin M, Mincheva Z, Ducot B, Lacroix C, Adams D. Effect on disability and safety of tafamidis in late onset of Met30 transthyretin familial amyloid polyneuropathy. Eur J Neurol 2013;20:1539-1545.

17. Gertz MA, Scheinberg M, Waddington-Cruz M, et al. Inotersen for the treatment of adults with polyneuropathy caused by hereditary transthyretin-mediated amyloidosis. Expert Rev Clin Pharmacol 2019;12:701-711.

18. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816-821.

19. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014;157:1262-1278.

20. Dasgupta I, Flotte TR, Keeler AM. CRISPR/Cas-dependent and nuclease-free in vivo therapeutic gene editing. Hum Gene Ther 2021;32:275-293.

21. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020;5:1-1.

22. Power DM, Elias NP, Richardson SJ, Mendes J, Soares CM, Santos CR. Evolution of the thyroid hormone-binding protein, transthyretin. Gen Comp Endocrinol 2000;119:241-255.

23. van Bennekum AM, Wei S, Gamble MV, et al. Biochemical basis for depressed serum retinol levels in transthyretin-deficient mice. J Biol Chem 2001;276:1107-1113.

24. Finn JD, Smith AR, Patel MC, et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep 2018;22:2227-2235.

25. Wood K, Pink M, Seitzer J, et al. Development of NTLA-2001, a CRISPR/Cas9 genome editing therapeutic for the treatment of ATTR. Presented at the Second European Congress for ATTR Amyloidosis, Berlin, September 1–3, 2019.

26. Sabnis S, Kumarasinghe ES, Salerno T, et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol Ther 2018;26:1509-1519.

27. Akinc A, Maier MA, Manoharan M, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol 2019;14:1084-1087.

28. Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 2014;30:1473-1475.

29. Tsai SQ, Zheng Z, Nguyen NT, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 2015;33:187-197.

30. Cameron P, Fuller CK, Donohoue PD, et al. Mapping the genomic landscape of CRISPR-Cas9 cleavage. Nat Methods 2017;14:600-606.

31. Müller ML, Butler J, Heidecker B. Emerging therapies in transthyretin amyloidosis — a new wave of hope after years of stagnancy? Eur J Heart Fail 2020;22:39-53.

32. Lin Y, Cradick TJ, Brown MT, et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 2014;42:7473-7485.

33. Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 2018;24:927-930.

34. Enache OM, Rendo V, Abdusamad M, et al. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat Genet 2020;52:662-668.

35. Vilenchik MM, Knudson AG. Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci U S A 2003;100:12871-12876.

36. Varga T, Aplan PD. Chromosomal aberrations induced by double strand DNA breaks. DNA Repair (Amst) 2005;4:1038-1046.

服务条款 | 隐私政策 | 联系我们