提示: 手机请竖屏浏览!

一种灭活SARS-CoV-2疫苗在智利发挥的预防效果
Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile


Alejandro Jara ... 传染病 呼吸系统疾病 • 2021.09.02
相关阅读
• 一种灭活SARS-CoV-2疫苗的预防效果

智利真实世界研究证实中国灭活疫苗效力

 

夏结来

空军军医大学预防医学系卫生统计学教研室

 

为了评价新冠病毒灭活疫苗对新冠疾病及其预后的预防效果,本文采用类似于评价mRNA疫苗预防新冠疾病保护效果的真实世界研究方法,于2021年2月2日在智利启动了前瞻性队列1。该队列囊括了智利国家健保系统覆盖的16岁及以上共约1,020万人。

查看更多

摘要


背景

许多国家正在开展旨在预防COVID-19的大规模疫苗接种计划,我们亟须可为决策提供支持的疫苗效果估计值。从2021年2月2日开始,智利使用一种灭活SARS-CoV-2疫苗(克尔来福)在全国范围内开展了大规模疫苗接种计划。

 

方法

我们应用前瞻性全国队列(包括纳入国家公共医疗系统的≥16岁参与者)评估了灭活SARS-CoV-2疫苗对COVID-19及相关住院、进入重症监护病房(ICU)和死亡的预防效果。考虑到随时间变化的疫苗接种状态,我们应用扩展Cox比例风险模型估算了风险比。我们估算了与部分接种疫苗(接受第一剂疫苗后≥14天,接受第二剂疫苗之前)和全程接种疫苗(接受第二剂疫苗后≥14天)相关的风险比变化。针对个体人口统计学和临床特征校正后估算疫苗效果。

 

结果

本研究于2021年2月2日至5月1日进行,队列包括约1,020万人。在全程接种疫苗的人群中,在预防COVID-19方面,校正后的疫苗效果为65.9%(95% CI,65.2~66.6),预防住院的效果为87.5%(95% CI,86.7~88.2),预防进入ICU的效果为90.3%(95% CI,89.1~91.4),预防COVID-19相关死亡的效果为86.3%(95% CI,84.5~87.9)。

 

结论

本研究的结果提示,灭活SARS-CoV-2疫苗有效预防了COVID-19,包括重症疾病和死亡,这一结果与疫苗2期试验的结果一致(由智利国家研究和发展局[Agencia Nacional de Investigación y Desarrollo]等资助)。





作者信息

Alejandro Jara, Ph.D., Eduardo A. Undurraga, Ph.D., Cecilia González, M.D., Fabio Paredes, M.Sc., Tomás Fontecilla, M.Sc., Gonzalo Jara, B.S.E., Alejandra Pizarro, M.D., Johanna Acevedo, M.S., Katherinne Leo, B.S.E., Francisco Leon, M.B.A., Carlos Sans, B.S.E., Paulina Leighton, B.S.E., Pamela Suárez, B.S.E., Heriberto García-Escorza, M.S., and Rafael Araos, M.D.
From the Ministry of Health (A.J., C.G., F.P., T.F., G.J., A.P., J.A., K.L., F.L., C.S., P.L., P.S., H.G.-E., R.A.), Facultad de Matemáticas (A.J.) and Escuela de Gobierno (E.A.U.), Pontificia Universidad Católica de Chile, Millennium Nucleus Center for the Discovery of Structures in Complex Data (A.J.), Millennium Initiative for Collaborative Research in Bacterial Resistance (E.A.U., R.A.), the Research Center for Integrated Disaster Risk Management (E.A.U.), Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo (R.A.), and the Advanced Center for Chronic Diseases (R.A.) — all in Santiago, Chile; and the CIFAR Azrieli Global Scholars Program, CIFAR, Toronto (E.A.U.). Address reprint requests to Dr. Araos at Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12461, Las Condes 7590943, Chile, or at rafaelaraos@udd.cl.

 

参考文献

1. Dong E, Du H, Gardner L. An interactive Web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020;20:533-534.

2. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 2020;324:782-793.

3. Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis 2020;20:669-677.

4. Guan W-J, Ni Z-Y, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708-1720.

5. Li Y, Campbell H, Kulkarni D, et al. The temporal association of introducing and lifting non-pharmaceutical interventions with the time-varying reproduction number (R) of SARS-CoV-2: a modelling study across 131 countries. Lancet Infect Dis 2021;21:193-202.

6. Walker PGT, Whittaker C, Watson OJ, et al. The impact of COVID-19 and strategies for mitigation and suppression in low- and middle-income countries. Science 2020;369:413-422.

7. Ledford H, Cyranoski D, Van Noorden R. The UK has approved a COVID vaccine — here’s what scientists now want to know. Nature 2020;588:205-206.

8. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 2020;383:2603-2615.

9. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021;397:99-111.

10. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021;384:403-416.

11. Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021;397:671-681.

12. Tanne JH. Covid-19: FDA panel votes to approve Pfizer BioNTech vaccine. BMJ 2020;371:m4799-m4799.

13. Zimmer C, Corum J, Wee S-L. Coronavirus vaccine tracker. New York Times, June 10, 2021 (https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html).

14. Our World in Data. Coronavirus pandemic (COVID-19). 2021 (https://ourworldindata.org/coronavirus).

15. Dagan N, Barda N, Kepten E, et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med 2021;384:1412-1423.

16. Vasileiou E, Simpson CR, Robertson C, et al. Effectiveness of first dose of COVID-19 vaccines against hospital admissions in Scotland: national prospective cohort study of 5.4 million people. February 19, 2021 (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3789264).

17. Thompson MG, Burgess JL, Naleway AL, et al. Interim estimates of vaccine effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines in preventing SARS-CoV-2 infection among health care personnel, first responders, and other essential and frontline workers — eight U.S. locations, December 2020–March 2021. MMWR Morb Mortal Wkly Rep 2021;70:495-500.

18. Daniel W, Nivet M, Warner J, Podolsky DK. Early evidence of the effect of SARS-CoV-2 vaccine at one medical center. N Engl J Med 2021;384:1962-1963.

19. Britton A, Jacobs Slifka KM, Edens C, et al. Effectiveness of the Pfizer-BioNTech COVID-19 vaccine among residents of two skilled nursing facilities experiencing COVID-19 outbreaks — Connecticut, December 2020–February 2021. MMWR Morb Mortal Wkly Rep 2021;70:396-401.

20. Doshi P. Will covid-19 vaccines save lives? Current trials aren’t designed to tell us. BMJ 2020;371:m4037-m4037.

21. Lopalco PL, DeStefano F. The complementary roles of phase 3 trials and post-licensure surveillance in the evaluation of new vaccines. Vaccine 2015;33:1541-1548.

22. Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020;369:77-81.

23. Zhang Y, Zeng G, Pan H, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 2021;21:181-192.

24. Wu Z, Hu Y, Xu M, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 2021;21:803-812.

25. Cohen J, Moutinho S. Third time’s the charm? Brazil scales back efficacy claims for COVID-19 vaccine from China. Science. January 12, 2021 (https://www.sciencemag.org/news/2021/01/third-time-s-charm-brazil-scales-back-efficacy-claims-covid-19-vaccine-china).

26. Baraniuk C. What do we know about China’s covid-19 vaccines? BMJ 2021;373:n912-n912.

27. Sinovac. Summary of clinical trial data of Sinovac’s COVID-19 vaccine (CoronaVac). 2021. (In Chinese) (http://www.sinovacbio.com/?optionid=754&auto_id=927).

28. Tanriover MD, Doğanay HL, Akova M, et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021 July 8 (Epub ahead of print).

29. Centers for Disease Control and Prevention. SARS-CoV-2 variant classifications and definitions. 2021 (https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html?

30. Hitchings MDT, Ranzani OT, Scaramuzzini Torres MS, et al. Effectiveness of CoronaVac in the setting of high SARS-CoV-2 P.1 variant transmission in Brazil: a test-negative case-control study. May 1, 2021 (https://www.medrxiv.org/content/10.1101/2021.04.07.21255081v2).  preprint.

31. Shepherd A. Covid-19: Chile joins top five countries in world vaccination league. BMJ 2021;372:n718-n718.

32. Cifras Oficiales COVID-19. Ministerio de Salud, plan de acción coronavirus COVID-19, 2020 (https://www.gob.cl/coronavirus/cifrasoficiales/). 

33. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020;323:2052-2059.

34. Bhargava A, Fukushima EA, Levine M, et al. Predictors for severe COVID-19 infection. Clin Infect Dis 2020;71:1962-1968.

35. Numbers K, Brodaty H. The effects of the COVID-19 pandemic on people with dementia. Nat Rev Neurol 2021;17:69-70.

36. Therneau TM. A package for survival analysis in R: R package version 3.1-12. Rochester, MN: Mayo Clinic, April 2021 (https://cran.r-project.org/package=survival/survival.pdf). 

37. R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2019.

38. Jara A, Undurraga EA, Araos R. Tool for estimating the probability of having COVID-19 with one or more negative RT-PCR results. January 24, 2021 (https://www.medrxiv.org/content/10.1101/2021.01.16.21249939v1).  preprint.

39. Lipsitch M, Jha A, Simonsen L. Observational studies and the difficult quest for causality: lessons from vaccine effectiveness and impact studies. Int J Epidemiol 2016;45:2060-2074.

40. Trogen B, Caplan A. Risk compensation and COVID-19 vaccines. Ann Intern Med 2021;174:858-859.

41. Ministerio de Salud. Reporte circulación de variantes SARS-CoV-2 en Chile. Santiago, Chile: Departamento de Epidemiología Ministerio de Salud, 2021.

42. Ministério da Saúde. Informe técnico: campanha nacional de vacinação contra a Covid-19. January 19, 2021 (https://www.conasems.org.br/wp-content/uploads/2021/01/1611078163793_Informe_Tecnico_da_Campanha_Nacional_de_Vacinacao_contra_a_Covid_19-1.pdf).

服务条款 | 隐私政策 | 联系我们